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Abstract: The proposed methodology is oriented data with Gaussian behavior is to adjust the normal 

distribution function to the data time series maximum data ozone concentration of 2010 - 2017, to give a 

forecastof concentration, then we use the Bayesian inference for normal data. To validate the model used the 

following statistical estimators, measuring the root mean square error, mean square error, determination 

coefficient and prediction approach. 

Using new means and variances of the new features of extreme distribution generate two new functions 

normal distribution a minimum and a maximum, so we obtain a new forecast data for further concentration to 

150 ppb. And also having the three functions of normal probability distribution, the first set and two new 

functions normal distribution introduce stochastic method Gaussian mixture to give a new distribution function 

generally normal probability. We also use the sum of the three distribution functions to determine normal 

behavior or trend of maximum ozone concentrations for the city of Mexico probability. The database that was 

used is from page Mexico City http://www.aire.cdmx.gob.mx/ 

Keywords: Ozone Pollution, Random Distribution Functions and Variable Extreme, Bayesian Inference, 

Convolution. 

 
Mexico City has had a very marked history with the evaluation of this air pollutant, ozone which for 

decades the government and government institutions and Scientific been given the task of trying to reduce the 

concentrations of the pollutant that both overwhelms the City and the Capitalinos through technological means 

established and Legislations well as research concerning the components of gasoline used by the automotive and 

transportation systems within the City. We know that the temperature directly affects the ozone concentration, 

and this year 2018 has been affected by such temperature rises so is expected for the coming months and 

represents a health risk, 

Season high concentrations of this pollutant begins approximately half February and ends with the first 

rains June. Also, exposure of high ozone levels is associated with physiological and inflammatory effects in the 

lungs of healthy young adults who exercise outdoors. Therefore, it is recommended to reduce exposure time 

outdoors, especially the most vulnerable such as children, the elderly, pregnant women and people with 

respiratory and cardiovascular problems population, there is a direct relationship between chronic exposure to 

pollution and increased cases of morbidity and mortality. 

According to Mexico Mexican Official Standard (NOM-020-SSA1-2014) recommended concentrations 

below 0095 ppm for 1 hour average, and less than 0070 ppm for the average of 8 hours (annual maximum). 

Therefore tropospheric ozone located at surface level in urban areas occurs when nitrogen oxides (NOX) and 

volatile organic compounds (VOCs) react in the atmosphere in the presence of sunlight. At high concentrations 

can endanger human health and vegetation. 

First the data fit a Gaussian distribution which an analysis of these in a histogram is made and its 

parameters are obtained by the method of Maximum Likelihood The importance of this distribution model is 

that it allows many natural phenomena, while mechanisms that underlie much of this phenomenon are unknown, 

because of the enormous amount of uncontrollable variables involved in them, use the normal model can be 

justified by assuming that each observation is obtained as the sum of a few independent causes. 

In the normal distribution, equation (1) one can calculate the probability of various values occur within 

certain ranges or intervals. However, the exact probability of a particular value within a continuous distribution, 

as the normal distribution, is zero. This property distinguishes continuous variables, which are measures of 

discrete variables, which are counted. As an example, the time (in seconds) is measured and not counted. 
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Figure 1. Bell curve or Gaussian density function (Source: Internet) 

 

Now as we get the parameters of estimating a probability distribution function, we use the Maximum Likelihood 

technique to estimate parameters for adjustment. The maximum likelihood method is a method for obtaining 

apoint estimatorof a random variable. 

 

Let (X1, ..., Xn) a random sample with a distribution function f (x | ɗ). 

 

We define the likelihood function as: 

 

╛Ᵽȿ╧ ,╧ ,ȣ╧▪ =  █(╧░|Ᵽ)

▪

░=

 

 

(2) 

The estimator ɗ in the maximum likelihood method is the value that maximizes the likelihood function. This 

value is called maximum likelihood estimator EMV (ɗ). 

Be: 

╛Ᵽȿ╧ ,╧ ,ȣ╧▪ = ἴἶ╛Ᵽȿ╧ ,╧ ,ȣ╧▪ =  █(╧░|Ᵽ)

▪
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(3) 

 

So the maximum likelihood estimator is defined as: 

 

╔╜╥Ᵽ = ἵἩὀ
Ᵽɴ ◙
╛Ᵽȿ╧ ,╧ ,ȣ╧▪  (4) 

 

Through the above description parameters of a normal distribution which are obtained by doing the following: 

 

By the method of Maximum Likelihood, the likelihood function is: 
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╝
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Logarithms and differentiating with respect to parameters to be estimated have a system of equations as follows: 

 
⸗ἴἷἯ(╛Ⱨ,Ɑ)
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(6) 

http://www.universoformulas.com/estadistica/inferencia/estimador-puntual/
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With the solution: 
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(7) 

 

With the first set Normal we get 

 

╝▫►□╪■(Ⱨ,Ɑ)  (8) 

 

Now we are looking for extreme values are those that want to know the probability of occurrence so we use 

Bayesian inference to find this probability with a new distribution function will be part of the new features of 

normal distribution and function extremely variable or GeV, our new target will be the average. 

 

Bayesian inference 

 

Bayesian inference is the process of analyzing statistical models incorporating prior knowledge of the model or 

model parameters. The root of such an inference is Bayes' theorem: 

 

╟╟╪►╪□▄◄►▫▼ȿ╓╪◄▫▼

=  
╟╓╪◄▫▼ȿ╟╪►╪□▄◄►▫▼ ╟z(╟╪►╪□▄◄►▫▼)

╟(╓╪◄▫▼)
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(9) 

 

In this case we have the observations in the form of normal distribution 

 

╧|Ᵽ ~  ╝(Ᵽ,Ɑ)  (10) 

 

Where sigma is previously known and PDF to Priori is 

 

Ᵽ ~  ╝(Ⱨ,Ⱳ)  (11) 

 

Here mu and tao are also known, we are looking for n samples of the data observed in the case of ozone peak 

values or above 150 ppb, the case of particulate PM10 above 120 microg / m3, the case PM2. 5 above 65 microg 

/ m3 and in the case of maximum temperatures is the whole data sample and thus obtain the new Normal 

distribution function with the new required parameter: 
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Now these data contain noise, no nulls or zeros from the adjustment process and although it has good 

approximation is not fit quite right data so which produce inaccuracy to the distribution function Normal, 

therefore apply a random noise with a uniform distribution with the length of the terms of the time series data, 

we now apply a setting with the function extreme value distribution (GEV) to find the parameters that fit even 

better this data with the random noise. 

 

╖╔╥( Ⱨ,Ɑ,▓)  (13) 

 

Which a GEV fits with this uniform random distribution 

 

╖╔╥╪(╧╪,Ⱨ,Ɑ,▓ )  (14) 

 

And thereafter a GEVA is generated (with random parameters GEVa) 
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╖╔╥═( Ⱨ╪,Ɑ╪,▓ )  (15) 

We also adjusted now one GEV of the input data, here is where the theory of Extreme Value comes, 

and now seek a new distribution function, and is where the new equation is applied depending on the properties 

of the parameters that were previously obtained: 

 

GEV 1 
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We now get a second equation for the new parameters  

GEV 2 
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Basic theory of equations shown above 

We study if the base is valid to this sum, we have for the case of two sums of the parameters of a GEV 

of the adjusted data, another random GEV and the parameters of a Normal Bayesian the probabilities for values 

above the target, now the Central Limit Theorem tells us the following: 

 

The central limit theorem or central limit theorem states that, in very general terms, if Sn is the sum of 

n independent random variables and variance nonzero but finite, then the distribution function Sn ñapproaches 

wellòa normal distribution 

 

 
Figure2. Central Limit Theorem 
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You want to calculate a new feature probability distribution with the sum of the three distribution 

functions prior probability, but we know that some other techniques would be used to do this, plus there are two 

functions of the same species and not so with the results of Theorem we can use the properties of the normal 

distribution function to find an equation for this.  

 

Thus we enunciate property: The sum is normally distributed with. Conversely, if two independent random 

variables whose sum normally distributed, should be normal.Ὗ= ὢ+ ὣ ὔ(‘ὼ+ ‘ώ,„2ὼ+ „2ώ)  

 

We are trying sums of n probability distribution functions, so we can make an equivalent with her stockings to 

start well, we can also take the theorem of convergence in r - th average:  

 

It's a sequence of random variables Xn is said to converge to X in r - th media if the following is true: 
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This ensures the convergence of random variables or data, then we can do this, where ╔(╧)░ = ●░ 
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Treat mean sums as the sum of the properties of normal data or normal behavior, but with the observation that 

this on n, in this case the number of averaging times have. 
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We now proceed to also add the half-n as being a function of x, then we do the following: 
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And so  
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Now the variance. The variance can be written as and integrate up to n 
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Now notice that is divided by n-1 so started the sum of x between n-1 since n = 1 indetermina  
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see also  
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So we are having these results we can say based on the Weak law of large numbers as follows: 

 

Khintchine form (1929). Be ὢά  a sequence of independent random variables and also distributed with mean 

and variance Ὁὢά = ‘ὠὥὶὢά = „2 

 

 

Then we have: 
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Where Xm is given by  
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A demonstration using the Chebyshev inequality which is  
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Using Chebychev Inequality as with n> 1  
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Here now raising and clearing to k, so it turns out that ‐=
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 and n ὲᴼÐthe expretion is 0 

 

Online references (9)  

With this we prove that when n tends to infinity this division is zero which proves the law and that the 

expressions given if you give a single mean and standard deviation and since Xm is the data set maximum 

concentrations of daily ozone alone match three probability distribution functions, Chebyshev inequality is a 

result that offers a lower probability that the value of a random variable with finite variance is at a certain 

distance from their average expectation or dimension. 

 

Another consequence of the theorem is that for each distribution with mean ɛ and standard deviation ů 

finite, at least half of their values are concentrated in the interval)(‘ Ѝ2„,‘+ Ѝ2„and so we finally have the 

mean and standard deviation for sums of several distribution functions, now Moments of GEVὒ(‗ὶ))  the 

probability weighted moments sample must be the first moment is the mean and the second moment is the 

standard deviation or variance. 

 

Now the parameters of the function extreme value or GEV we have: 

 

Table 1. Parameters of the extreme variable function (GEV) 

Location parameter   

 

 

Ὢὼ0 ὼ = Ὢ(ὼ ὼ0)  

 

It's called location parameter. Examples of location 

parameters include the mean, median and mode. 

 

Scale parameter 

 

 

The normal distribution has two parameters: a 

parameter location parameter mu and sigma scale. 

In practice, often the normal distribution is 

parameterized in terms of the square scale 

corresponding to the variance of the distribution. 

 

Shape parameter 

 

 

Many estimators measure the location or scale; 

However, there are also estimates for parameters of 

shape. More simply, they can be estimated in terms 

of the highest moments, using the method of 

moments, as in the asymmetry (third time) or the 

kurtosis (fourth time), if higher moments are 

defined and finite. 

 

Thus function GEV end or can combine this value as follows which are the new parameters of the new features 

of extreme distribution: 
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According to the above definition the shape parameter we can deduce the method of higher moments is between 

two given that there are two parameters lower order composing this, according to the equations obtained, if we 

would not use a Newton- Raphson for obtain these parameters, so then we have: 
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 Noting Series can reach the equivalent sum and thus we obtain an expression for the shape parameter 
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Then we have the following 
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Now we have this range as we saw above, our shape parameter is greater or less than zero, also parameters mu 

and sigma are in ppb 

The shape parameter is dimensionless. 
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But our measurements are finite so  
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This should obey the following to calculate the new features GEV distribution  

 

ἵἱἶ╞ Ⱨ
Ɑ

▓
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Without exceeding these limits.  

 

We have the following probability distribution functions, normal Bayesian data GEV GEV Randomly and 

therefore are 3 functions that have so the first two sums two probability distribution functions are:  

 

Now new means and variances of the features found now only generated the new features extreme normal 

distribution  

 

╝▫►□╪■(╔╖╔╥ , ╥╪►╖╔╥ )  
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╝▫►□╪■(╔╖╔╥ , ╥╪►╖╔╥ )  (49) 
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And so you have the three functions Gaussian probability distribution 
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Table 2. Probability distribution functions GEV and Normal 

GEV normal 

╖╔╥( Ⱨ,Ɑ,▓)  ╝▫►□╪■(Ⱨ,Ɑ)  
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╖╔╥(╜◊▬▫▼◄□▄╪▪Ⱨ,╢░▌□╪╢╓ Ɑ,▓ )  ╝▫►□╪■(╔╖╔╥ , ╥╪►╖╔╥ )  

 

Adjustment indicators 

Indicators deviation of a group of data relative to a model can be used to assess the goodness of fit 

between the two. Among the most common indicators they are as follows. Those who were used to determine 

the distribution that best fit the data gave. Are the mean square error (RMSE), mean square error (MSE), the 

accuracy prediction(AP) and coefficient of determination (R2) Table 4 gives the equations for adjustment 

indicators that have been used by Lu (2003) and Junninen et al. (2002). 

 

Table 3. Indicators Set 

Indicator Equation  

Root Mean Square Error 

╡╜╢╔=
╝
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Mean Square Error 
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Coefficient of Determination 
╡ =
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Accuracy Prediction 
═╟=

В ╟░ ╞░╝
░=

В ╞░ ╞░╝
░=

 

 

Notation: N = number of observations, = predictive values, = observed values, P = average of predicted values, 

O = average of the observed values, = Standard Deviation of Predicted values, = Standard deviation of the 

observed values.ὖὭὕὭὛὴὛέ 

 

Normal operations between new found another comparison approach  

 

Now we apply the sum of the three normal convolution to determine a trend and also an approximation.  

 

two functions of normal distribution are as follows 
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Now we know that convolution is: 
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Making a change of variables  
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▄
●

╫ ▄

◊ +  
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╫
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+Ð

Ð

 

 

(62) 

Ѝ╪╫

╪ +  ╫
▄

●

╫ ▄ ◊ +  ▬◊▀◊
+Ð

Ð

 

 

(63) 

 

With  

▬=
Ѝ╪●

╫ ╪ +  ╫
 

 

(64) 

Now this part is an integral Gaussian 

 

╘▬ = ▄ ◊ +  ▬◊▀◊
+Ð

Ð

 

 

(65) 

Let's see we complete the square 

 

╘▬ = ▄
◊
▬

+
▬

▀◊=  ▄
▬

▄
◊
▬

▀◊
+Ð

Ð

+Ð

Ð

 

 

(66) 

 

And with  

 

◌=  ◊
▬

 

 

(67) 
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▄
▬

▄ ◌ ▀◌
+Ð

Ð

 
(68) 

 

Now let's apply my alternative method to resolve this Gaussian Integral, you can resort to the conventional 

method for variable change, polar or otherwise 

 

Now we have, Fubini theorem and Cartesian coordinates what we want is just the area under the curve is 

generated  

 

▄ ● ▀●=  ▄●▀●
╫=Ð

╪=

+Ð

Ð

▄●▀●
╫=Ð

╪=

 

 

(69) 

 

╘● =  ▄●▀●
╫=Ð

╪=

 

 

(70) 

Thus we have  

╘(●) =  ▄●▀●
╫=Ð

╪=

= ▄●▀●
╫=Ð

╪=

 

 

(71) 

Now equating the two results 

 

╘(●) =  Ⱬ 

 

(72) 

Which has as  

 

╘● =  ЍⱫ   =   ╘(◌)  

 

(73) 

▄
▬

ЍⱫ  
(74) 

▄

Ѝ╪●

╫ ╪ +  ╫
ЍⱫ=  ▄

╪●

╫ ╪ +  ╫ ЍⱫ 

 

(75) 

Ѝ╪╫

╪ +  ╫
▄

●

╫ ▄z
╪●

╫ ╪ +  ╫ ЍⱫ 

 

(76) 

ЍⱫ╪╫

╪ +  ╫
▄

●

(╪ +╫ )  

 

(77) 

Finally  

 

█z ▌ ● =
ЍⱫ╪╫

╪ +  ╫
▄

●

(╪ +╫ ) =  
ЍⱫ╪╫

╪ +  ╫
▄

(● Ⱨ ⱦ)

(╪ +╫ )  

 

(78) 

So the new Gaussian distribution function is: 

 

ⱶ● =
ЍⱫ╪╫

╪ +  ╫
▄

(● Ⱨ ⱦ)

(╪ +╫ )  

 

(79) 

With b Standard deviations for each distribution function of Entry and First Gaussian, now we have to get the 

Third Addition with this Convolution   
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(80) 
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(81) 

Finally  

 

█z ▌ ● =
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▄

●
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╪ +  ╫
▄

(● Ⱨ ⱦ)

(╪ +╫ )  

 

(82) 

So the new Gaussian distribution function is: 

 

ⱶ● =
ЍⱫ╪╫

╪ +  ╫
▄

(● Ⱨ ⱦ)

(╪ +╫ )  

 

(83) 

B with standard deviations of each distribution function the input and the first gaussian, now we have to get the 

third sum with this convolution   

 

 

 

The third convolution is  

 

ⱶ● =
ЍⱫ

╬+╪+  ╫

╬ ╪+  ╫

▄

Ѝ (● Ⱨ ⱦ ♬)

╬
╬+╪ +  ╫

╬ ╪ +  ╫
 

 

(84) 

Stochastic method of Gaussian Mixtures  

The clustering model most closely related to statistical distributions is based on the model. Groups can 

then easily be defined as the most likely objects belonging to the same distribution. A convenient property of 

this approach is that this is very similar to the way in which the artificial data sets are generated: by random 

sampling of a distribution of objects. 

 

One of the most prominent methods is known as Gaussian mixture model (used in the Expectation-

Maximization algorithm). Here, the data set is usually modeled with a fixed number (to avoid overfitting) of 

Gaussian distributions is initialized randomly, and whose parameters are iteratively optimized to better classify 

the data set. This will converge to a local optimum, multiple runs may produce different results. For a grouping 

well, data is often assigned to the Gaussian distribution more likely to belong to such a grouping. 

 

Grouping based on distributions produces complex models that can capture groups correlation and 

dependencies between attributes. Even so, these algorithms put an extra burden on the user: for many real data 

sets can be no definite mathematical model. 

 

Examples of clustering using Expectation-Maximization (EM) 

Mixture models are Gaussian probabilistic model to represent subpopulations normally distributed 

within a general population. Mixture models generally do not require to know which subpopulation a data point 

belongs, which allows the model to learn automatically subpopulations using Expectation-Maximization (EM). 

 

For example, the data modeling human height, the height is typically modeled as a normal for each 

gender with an average for men and women distribution. Since only the height data and no gender assignments 

for each data point, the distribution of all heights follow the sum of two (different average) normal distributions 
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scale (different variance) and displaced. A model that makes this assumption is an example of a Gaussian 

mixture model (GMM), although either a GMM may have more than two components. The estimation of the 

parameters of individual components normal distribution is a canonical problem in data modeling with GMM. 

 

The GMM is widely used to group and estimate the physical density. However, they have a wide range 

of applications in other fields, such as modeling meteorological observations geoscience (Zi, 2011), certain 

autoregressive models or some noise time series. 

 

If you believe your data come from a different set of normal distributions, then the GMM is suitable 

analysis tool. The normal distribution is an underlying assumption, which means that although it is assumed that 

the distributions are Gaussian, or may not be. In some cases, you may not have, but use logic or prior knowledge 

to assume that your data are normally distributed. Therefore, the models created from a GMM method involve 

some level of uncertainty. 

 

Gaussian mixture model means that each data point sets (randomly) from one of the data classes C, 

likely to be drawn from the class i, and each class is distributed as Gaussian with mean and standard deviation. 

Given a set of data extracted from said distribution estimate these unknown parameters seek.ὴὭ‘Ὥ„Ὥ 
 

The algorithm used here is to estimate EM (Expectation Maximization). In short, if we knew the kind 

of each of the N input data points, we could separate them, and using Maximum Likelihood to estimate the 

parameters of each class. This is the step that makes selections (soft) class (unknown) for each of the data points 

based on the previous round of parameter estimates for each class. 

 
 

Figura4. basic equations of EM algorithms (Source:http://mccormickml.com/2014 )  

 

General Forecast of Maximum Several Ozone Exceedances for 2018  

 

Table 4. Probability distribution functions GEV Maximum Daily Ozone [O3] of 2010-2017 
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Table 5. QQ plots of GEV and Gaussian Mixture Maximum Daily Ozone [O3] of 2010-2017 
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Table 6. Probability distribution functions GEV Maximum Daily Ozone [O3] of 2010-2017 Consider the 

table above 150 ppb of [O3] 

PDF quantile From 2010-18 

to 365 days 

From 2010-18 to 3285 days  

Joined 

Gaussian Normal .9933         3 22  

Gaussian Bayes 0.9998   1 1  

Gaussian 1 (GEV 1) 0.9951 2 16  

Gaussian 2 (GEV 2) .9472         19 --- 

Gaussian convolution 1 .9966 2  11 

Gaussian convolution 2 .9708 11 --- 

GEV 0.9866 5 --- 

GEV 1 0.9975          1 9 

GEV 2 .9493 18 --- 

2 Gaussian Mixtures 0.9765 9 --- 

3 Gaussian Mixtures .9972 1  10 
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Table with the final choice. 

PDF From 2010-18 to 

365 days 

From 2010-18 to 3285 cumulative 

days  

Gaussian 1 (GEV 1) 2 16   

Gaussian convolution 1 2 11 

GEV 1 1 9  

3 Gaussian Mixtures 1 10  

 

Table 7. Hosiery and CI is the confidence interval 

PDF Media in ppb Standard deviation in ppb 

Gaussian Normal 79.88 28.60  C1=78.84 80.92 

Gaussian Bayes 79.81 28.59   

Gaussian 1 (GEV 1) 83.37 27.25  CI= 82.33 84.41 

Gaussian 2 (GEV 2) 89.87 36.39  CI= 88.83 90.91 

Gaussian Adds 1 75 27.25 

Gaussian Add 2 75 36.39 

2 Gaussian Mixtures 86.41 32.38 

3 Gaussian Mixtures 82.12 24.78 

 

Table 8. Parameters obtained from GEVs 

PDF Media in ppb Variance in ppb 

GEV 1 

 

k2 = -0.3164 

SigmaSD = 27.7729 

MupostMean = 74.1718 

83.37 742.56 

GEV 2 

 

k2 = -0.3164 

SigmaSD2 = 37.0936 

MupostMean2 = 77.5822 

89.87 13248 

 

Possible Numbers Days Pre environmental contingencies to Mexico City for this 2018 are: 

1 to 16 days over 150 ppb passing daily Maximum ozone [O3] 

 
Figure 3. means obtained with the Gaussian Mixtures with Trend 3 Ozone downward (Author) 
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Table 9. Function variable properties and extreme GEV 

 
 

 
 

GEV 

 

K = -0.1831    

Sigma = 26.9508   

Mu = 68.5262 

 

Mean = 79.88 = 823.52 Variance 

 

MSE = 0.0000943 

RMSE = 0.0083 

AP = 0.9991 

R2 = 0.9896 
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Trend of Ozone 

 
Figure 4. Average Ozone Trends (Source:http://www.aire.cdmx.gob.mx/ ) 

 

Table 10. Average approximated by the sum of the Standard clearly see the downward trend of ozone 

concentration 

YEARS Averages Ozone ppb Gaussian sums ppb 

Mean 

2010 81 87 

2011 83 82.50 

2012 76 90 

2013 78 94.5 

2014 76 90 

2015 78 87 

2016 78 82.50 

2017 79 75 

 

http://www.aire.cdmx.gob.mx/
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Figure 5. Means obtained from different PDF Gaussian found against the official average ozone trend data 

 

 
Figure 6. averages obtained from different PDF GEV found against the official average ozone trend data 

 

Table 11. Graphics QQ plot of Normal Normal addition and 3 and 2 Mixtures 
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Let us now limits according to the theory proposed 

 

Table 12. Measurements Testing Parameters derived GEV 

Let us now limits for GeVs  

 
GEV of 2010-2017 Trend 

GEV 

ἸἸἪ . ▬▬╫ . ἸἸἪ 

GEVA 

ἸἸἪ ▬▬╫ . ἸἸἪ 

GEV2 

ἸἸἪ . ▬▬╫ . ἸἸἪ 
GEV1 

ἸἸἪ . ▬▬╫ . ἸἸἪ 

 

K = -0.1831    

Sigma = 26.9508   

Mu = 68.5262 

 

With 215.7 ppb 

GEV 1 

 

k2 = -0.3164 

SigmaSD = 27.7729 

MupostMean = 74.1718 

 

With 161.9 ppb  

GEV 2 

 

k2 = -0.3164 

SigmaSD2 = 37.0936 

MupostMean2 = 77.5822 

 

With 194.81 ppb 

 

 
Figure 7. Series Temporary Maximos Ozone 2010-2017 

GEV 215 ppb 

194.81 GEV 2 ppb 
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Conclusions 
With this methodology we have a choice to find day forecast, we can also see that the equations 

proposed for the parameters for the new functions extremely variable is satisfactory and comply with the given 

theory and demonstrated also that when applied to the data actual give their forecasts each and with the 

functions of normal distribution new grant pretty good day forecast, this method can see that not only a single 

function fitted to the data distribution gives favorable results even being a perfect fit as well the amounts of 

these normal operations also give their approach these results were made with every year but here only shows 

the trend of the years 2010-2017,the trend shown also coincides with the official chart trend monitoring page 

Mexico City, although stockings have been given higher or lower than shown. 

 

The software used was Matlab 2015, with some functions and subroutines as Stochastic Gaussian 

mixture.  
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