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Abstract: The following article is about the analysis of Pollutant Dispersion Models based on Gaussian and
Parabolic Models and a comparison with HyperbdWodels, looking at some of their properties and
applications, an introduction to the study of Diffusion in these Models and their results is made.
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Introductio n

Linear parabolic diffusion theories based on Fourier's or Fick's laws predict disturbances that can
propagate at infinite speed. However, linear parabolic diffusion theories based on Fick's Law or Fourier's laws
(in the caseof mass transport or heat conduction, respectively) predict an infinite propagation velocity, their
amplitudes decaying exponentially. For this reason, in some applications and the use of linear parabolic models
may be accurate enough for purposes.

Thetheory of hyperbolic diffusion was pioneered in 1958 by Cattaneo who proposed a generalization of
Fourier and Fick's Law. The study of hyperbolic diffusion has been limited mainly to pure diffusion problems
up to now. The authors have recently propose@relization of the hyperbolic diffusion equation that can
also be used in cases of convection. From a numerical point of view, the simulation of the hyperbolic diffusion
equation has been limited mainly to 1D problems.

The theory of hyperbolic diffusiois derived by substituting in Fick's Law for a more general equation
due to Cattaneo, viz.

I n the equ a t-daled relaxdfion itessor tthiatehas sdimensions of time. So, the theory of
hyperbolic diffusion is defined by the foling set of equations the previous and now

zn

+ A=
z <4 l

We observe that when U = 0 we recover the parabol
equi val ent . even for U = 0. Assume i s Wer dpindtarcdnlso m

source terms, we obtain the-salled hyperbolic diffusion equation. Equation (1) is hyperbolic and, as a
consequence, we can define a velocity finite for the transport of contaminants.

I n = D
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To compare the solution of the classical formulation with the solution of the hyperbolic theory we solve
the hyperbolic one. Now, we need two initial conditions. because (1) involves semrdderivatives with
respect to time. Points to consider is thamiost applications the relaxation time is very small. Since Cattaneo's
and Fick's laws are equivalent in the steady state, we would only see differences on the smaller time scales.

A notable fact is that the hyperbolic convectitiffusion theory is not agvalent to the parabolic
convectiondiffusion theory in the steady state. This implies that, for-zeno relaxation, both theories would
predict different results on all time scales. Within the atmosphere we have the following possible examples
which canbe modeled under the previous premise of the parabolic model

Now the analytical and numerical solutions have their advantages and disadvantages, as the analytical
solutions that we will see below are accurate and provide a deep theoretical understéndengphysical
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problem, but they are available for specific and simplified problems, the numerical ones can be applied to a
wide range of problems, except that they require more calculation time and have a loss of precision, as we can
see the Parabolic Miels where the mass transport is slower compared to the diffusion, the hyperbolic models
are apparently the opposite where the transport is fast and the diffusion is slow or very small

Figure 1. Contaminant Plumes and Contaminant Dispevgocan see the shape of the plume which goes in the
direction of the wind and turbulence, the geometric shape of this plume can be seen and is well known (sources

of images on the internet and magazines)

B - el 4
Figure2. Contaminant Plumes and Dispersion oft@omants we can see the shape of the plume which goes in
the direction of the wind and turbulence (sources of the images on the internet)
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Let's see a brief analysis of stability and mass balance if we handle the addition of the diffusive term in
the tempral part having the hyperbolic diffusion equation. Let's see the shape of the Gaussian plume a

description in the following figure
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Description

ﬂk

Polluting Feathers
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Now let's see thapproximation based on the
probability of leaving on one negative side the sai
as on the other, it is seen that it makes the Gauss
form so let's see that average which would be tha
the Gaussian distribution.

Figure 3 sources of the images onititernet
of forest fires

Obtaining the mean or Gaussian expectation, with a change of variable-
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The normal distribution has th@operty that all the measures of its central tendency, such as the mean,
but also the median and the mode, are equal and since we are saying that it has the same probability of going to

£ w
the left or to the right, we obtain the arithmetic average&i—lw? thus, being a and b the probabilities, this is
how you havé+ = 1 andd %Q}:QB %of mean.
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Thus we then have the Taylor Series approximations as
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Parabolic form
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You can see the nature of tvvmd speed and diffusion coefficients

Now the Hyperbolic form
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And the Eddy Diffusion coefficient is y in terms of the standard deviation
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The wind coefficient or wind speed depends on the probability that it varies from one side to another

Y= ® d)yw
- Yo

And this term is Tao, if we can approximate it in this way
_ Yo
)
We have the parabolic equation according to [Skiblzarra Bookpage 83 see References] in 2D form
and with the elimination of some terms we have the following.
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” Figure 3. Schematicregion D with S boundaries for
= o9 +| the Transport Equation (Skibai Parra Book see
31__ References)
nopy =

Having the expression as
. 4
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This equation indicates that the rate of change of the total mass of the kth pollutantiapsaieain D
is equal to the sum of the rates with which said substance is emitted, minus the rate of mass loss of the pollutant
that escapes. from domain D through the open boundary, the latter due to advection. Now completing the term
where tao intervergein the Equation we have the following
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With the following Boundary conditions, we can maintain them and now having a starting time derivative

H

=
z

z 0
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Now let's see the followingith 1 » <<= B= vector of Wind Velocity
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We can see the | oss of concentration due to both t

the product of tao and diffusion mu, will cause the transport to change and decrease a lot if these factors
increase, now let'see the analysis of instability according to [SkibRarra Book see Reference page 88] book
with the parabolic model
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From the previous result, we have the following for the Parabolic model. Multiplyingtbg previous
Equation we have

Now using the Schwarz inequality
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Integrating
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Now according to the Hyperbolic model. If we arrange the Equation in the following way
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In a very similar way we have with the second derivative in time

In a definite time, one has

=1

=
z

=n
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Now we will start with a simple model without a Diffusive and Hyperbolic boundary and not
homogeneous with a tao = 1, another important point is the diffusion coefficient increases the fluid is more
regular if itdecreases the convective term increases and is more turbulent

Let's see the hyperbolic diffusive model with and without border and their respective initial conditions,
with diffusive, advective and Source terms.

Hyperbolic model with Tao =1
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Solution
Reduce the Equation to a Klein Gordon Equation giving the general homogeneous solution
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Now solving the inhomogeneous system with f = g = 0 the solution is
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Results
Pollution rate Simulation

Solucion Modelo Hiperbolico no Homogeneo

Q =100where a is the wind speed

[—

za = Q

and C the Diffusion coefficient is
constant.
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Solucion Modelo Hiperbolico no Homogeneo
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Solucion Modelo Hiperbolico no Homogeneo

al =9.67195923336E+001,
bl =1.54332964547E+001,;
c1 =3.36189393472E+000;

— Taz:

a=Q

=10 =al*exp(f(b1-
1)72)/(2+c1/2))
Q=qg*z
u=1.8m/sC=0.025~
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Let's now see the same Hyperbolic model with 5 days, setting a constant Rate equRbthutiet [O3]

in time, Rate Q, with wind and diffusivity, varying against wind
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ool e RMSE Estimators
ok 9 de Junio R =0.9476 RMSE =1.10
2 o \ 8 de Junio R = 0.9437 RMSE =1.25
8 sl 7 de Junio R = 0.9543 RMSE =1.01
LI 6 de Junio R = 0.9305 RMSE = 1.36
%ol . 5 de Junio R = 0.9241 RMSE = 1.46
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The adjustments were made takihg values of Winds of that day and the Contaminant Rate here is an
example of the Adjustment of the Q Rate and the Wind in one direction

Pollution Rate of O3 Winds

S =6.98418059 Viento
1=0.93697628
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0 2 4 & 8 10 12 14 16 18 20
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Let us now see the parabolic diffusive model without boundary and its resgaittaleconditions, with
diffusive, advective and Source terms.
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Parabolic model
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Pollution Rate Simulation
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Now the Time Series presented by the Official page of the Acolman Station, State of México, January 1
and 2, 2022, Real Concentration datag//www.aire.cdmx.gob.mxy
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Seleccionaste el

para el dia: 2022-01-0,
tipo de datos

Figure 5. O3 concentration of January 2, 2022

Seleccionaste la estacién: ACO
para el dia: 2022-01-01
tipo de datos: Horarios

Gaussian Parabolic Model
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Results
Pollution Rate Simulation

wind speed.

6 2
D= 0.0062§%u=0.1 m/s

Q =100Dis the Diffusion coefficient and the
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