
International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 23 | Page

A Most Efficient Hybrid Algorithm for Transcendental and Non-

Linear Equations

Chaman Lal Sabharwal
Missouri University of Science and Technology

Rolla, Missouri - 65409, USA

Abstract: Finding roots of an equation is a fundamental problem in diverse fields. Mostly optimization

problems lead to solving non-linear equations for optimizing calculation of the value of a parameter, that is the

root of the equation. Numerical techniques are used when analytic solution is no available. We design and

implement a new algorithm that is proficient hybrid of Quadrisection and Regula Falsi methods. The

implementation results validate that the new algorithm outperforms the existing hybrid algorithms. Thus, we

contribute an essential hybrid algorithm to the repertoire of root finding algorithms.

Keywords: Bisection, Trisection, Quadrisection, Regula Falsi, Newton-Raphson, Secant, Hybrid Algorithm.

I. INTRODUCTION
Finding the roots of an equation is a fundamental problem in engineering fields. All disciplines in

physical and social sciences, including Computer Science, Engineering (biological, civil, electrical, mechanical),

and social sciences (psychology, economics, businesses) etc,, require the optimal solution to recurring non-

linear problems. The problems such as minimization, Target Shooting, Orbital Motion, Plenary Motion, Social

Sciences, Financial Stock Analysis etc, lend themselves to finding roots of non-linear functional equations [1].

There is a thorough study by Sapna and Mohan in the financial sector away from mathematics [2].

There are classical root-finding algorithms: Bisection, False Position, Newton-Raphson, Secant,

Modified Secant methods for finding the roots of an equation f(x) = 0. Every text book on Numerical Methods

has details of these methods [3], [4], [5]. Even though classical methods have been developed and used for

decades, yet enhancements are progressively made to improve the performance of these methods, barring new

methods.

Recently papers are making differing claims on their performance and seeking better performing

methods. In response, better algorithms that are hybrid of classical methods Bisection, Trisection, with False

Position, Newton Raphson methods been developed, namely Hybrid1 [6],Hybrid2 [7], and Hybrid3 [8]. Inspired

by these three algorithms, we have created a new adept algorithm Hybrid4, that is hybrid of Quadrisection and

false Position that is at par or better than Hybrid1, Hybrid2, and Hybrid3 in terms of computational efficiency,

solution accuracy (less error).and reduced iteration count required to terminate within the specified error

tolerance. We present Hybrid4 that further optimizes these algorithms one step further by reducing the

computing time and increasing the efficiency of the algorithm. The new hybrid algorithm is described in

Section3 and simulations validating the performance of the new algorithm are in Section 4.

The paper is organized as follows. Section II is brief description of classical methods Bisection, Regula

Falsi, Newton-Raphson, Secant; their strengths and pitfalls. In addition, Trisection and new Quadrisection

methods are included. Section III describes hybrid algorithms and new algorithm that outpaces the previous

hybrid algorithms. Section IV presents experimental results comparing the performance of previous hybrid

algorithms with the new Algorithm. Section V is conclusion.

II. BACKGROUND
The classical algorithms Bisection, False Position, Newton-Raphson, Secant methods are readily found in

any text book in detail and iterated in most articles[2]. For this reason, their stand alone derivations are passed

over to an appendix and skipped in this background section. Thus, for the sake of completeness, these

algorithms are delegated to an appendix for reference. To enhance the performance of Bisection method, Bader

et.al [7] designed a Trisection method that supersedes Bisection method in iterations performed, computation

time, and error of approximation at a small cost on number of function computations. We extend Trisection

algorithm to a Quadrisection algorithm that is at par with Trisection algorithm or better at iterations performed,

computation CPU time, and error in approximate root. These algorithms are used in conjunction with False

Position and Newton-Raphson methods to create hybrid algorithm. The effectiveness and efficacy of root

approximation is measured by number of iterations in root calculation and the accuracy of the termination of an

algorithm. The metrics for measuring error in the number iterations and stopping criteria are given first.

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 24 | Page

2.1 Metric for Error Measurement

There are various ways to measure error in approximate root of an equation in successive iterations to

continue to a more accurate approximate root. To determine the root at nth iteration, rn for which f(rn)≅ 0, we

proceed to analyze it as follows.

The iterated root approximation error can be

RelativeRootError =
𝑟𝑛 − 𝑟𝑛−1

𝑟𝑛

or

AbsoluteRootError = 𝑟𝑛 − 𝑟𝑛−1

Since a root can be zero, in order to avoid division by small numbers, it is preferable to use absolute error
 𝑟𝑛 − 𝑟𝑛−1 for convergence test. Another reason for discarding relative error this is that if rn = 2

-n
,

then
𝑟𝑛 − 𝑟𝑛−1

𝑟𝑛
 is always 1, it can never be less than 1, so the root-error tolerance test cannot be effectively

satisfied, that is, this test does not work.

Since function value is expected to be zero at the root, an alternate cognitively more appealing error test

is to use f(rn) for error consideration instead of rn. There are three versions for this concept, they are

RelativeValueError =
𝑓 𝑟𝑛 – 𝑓 𝑟𝑛−1

𝑓 𝑟𝑛

or

AbsoluteVlaueError = 𝑓(𝑟𝑛) − 𝑓(𝑟𝑛−1)
or

TrueValueError = 𝑓(𝑟𝑛)

for comparison criteria.

Since f(rn) is to be close to zero near the root, in order to avoid divide by small numbers, we discard

using
𝑓(𝑟𝑛) − 𝑓(𝑟𝑛−1)

𝑓(𝑟𝑛)
 . Further, since 𝑓(𝑟𝑛) − 𝑓(𝑟𝑛−1) can be close to zero without |f(rn)| being close to zero,

we discard using 𝑓(𝑟𝑛) − 𝑓(𝑟𝑛−1) also in favor of using only 𝑓(𝑟𝑛) , trueValue error. For example, f(rn)= (n-

1)/n is such an example. We avoid using the first two criteria for this reason and exploit the last one, 𝑓(𝑟𝑛) .
Now we are left with two options 𝑟𝑛 − 𝑟𝑛−1 and 𝑓(𝑟𝑛) to consider forerror analysis. Again, since rn and rn-1 can

be closer to each other without f(rn) being closer to zero. For examplern= 1 +1/n, f(rn) = rn. Between the options
 𝑟𝑛 − 𝑟𝑛−1 and 𝑓(𝑟𝑛) , we find that 𝑓(𝑟𝑛) is the only reliable metric for analyzing the approximation error.

Hence, we use, 𝑓(𝑟𝑛) , as the criteria for comparing with tolerance error analysis for all the methods uniformly.

2.2 Metric for Stopping Criteria, Halting Condition

Stopping criteria plays a major role in simulations. The iteration termination (stopping) criteria for False

Position method is different from Bisection method. Tradeoff between accuracy and efficiency is accuracy of

the outcome. In order to obtain n significant digit accuracy [3], let∈𝑠 be stopping error and let∈𝑎 be the

approximation error at any iteration. If∈𝑎<∈𝑠, the algorithm stops iterations. With∈𝑠= 5/10
n-1

, we have n

significant digit accuracy in the outcome. The bisection algorithm is trivial, here trisection and quadrisection

algorithm’s stopping criteria are described.

Here we describe two enhancements to bisection algorithm. Trisection algorithm [7] and Quadrisection,

new algorithm, each algorithm has four comparison tests and seven function evaluation references in

implementation. Thus, the Quadrisection algorithm uses the same amount of computation resources as

Trisection algorithm.

But the number of iterations bn (Bisection),tn (Trisection),qn (Quadrisection) required by the Bisection,

Trisection, and Quadrisection algorithms on [a,b] with stopping tolerance epsare

bn =log{(b-a)/tol} tn=(0.63) log{(b-a)/tol} qn= (0.5) log{(b-a)/tol}.

Trisection algorithm is 37% faster than Bisection algorithm, Quadrisection algorithm takes 13% fewer

iterations than Trisection algorithm to converge within the desired tolerance.

In addition, as observed below in each algorithm, in each iteration, there is no change in the computation

time: seven references to function evaluation and four references to compare test between Trisection and

Quadrisection algorithms..

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 25 | Page

2.3 Algorithms

2.3.1 Trisection Algorithm [7].

• Input: Function f(x), Initial approximations [a,b] and absolute error eps.

• Output: Approximate root r, enclosing interval, and number of iterations k

for k=1 to n

p := (2*a +b)/3; q := (a +2*b)/3;

if |f(p)| < |f(q)|

r := p

else

r := q

endif;

if |f(r)| < eps

return r,a,b, k;

else if f(a)*f(p) < 0

b:=p;

else if f(p)*f(q) < 0

a:=p;

b:=q;

else

a:=q;

end if;

end for

2.3.2Quadrisection Algorithm (new)

• Input: function f(x), Initial interval [a,b] and absolute error eps.

• Output: Approximate root r, enclosing interval, and number of iterations k

for k=1 to n

p:= (3*a +b)/4; m := (2*a +2*b)/4; q := (a +3*b)/4;

 r=m;

if f(a)*f(m)< 0

b=m; r=p;

if f(a)*f(p)<0

 b=p

else

a=p

endif

else

a=m;r=q;

if f(a)*f(q)<0

 b=q

else

a=q

endif

endif

if |f(r)| < eps

 return r, a,b, k;

endif

endfor

The Trisection algorithms [7],[8] and a Quadrisection algorithm are computationally equivalent in each

iteration, but Quadrisection algorithm requires fewer iterations to converge, see Table1,2,3. It shows that in the

sequence of innovations, Quadrisection algorithm is ahead of the other algorithms with respect to loop iteration

and accuracy in approximation of the root. These benchmark functions appear in recent papers [7],[8], see

Tables 1,2,3,4. The functions and the interval of definition are generic unbiased of any algorithm.

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 26 | Page

Table 1 Summary for Comparison of Methods Iteration Counts

 Non-Linear Equation

 Function f(x) = x^2 - x - 2, Interval [1, 6]

Max Iterations = 40 Error tolerance = 0.000001000000

 Method Iterations Error Root TimeUsed

FalsePos 28 0.0000007049318 1.999999765023 0.00875641700000

Bisection 22 0.0000007152558 2.000000238419 0.00317154200000

Trisection 14 0.0000009408381 1.999999686387 0.00561808300000

Quadrisection 11 0.0000007152558 2.000000238419 0.00425629100000

Table2Summary for Comparison of Methods Iteration Counts

 Non-Linear Equation

 Function f(x) = 0.986*x.^3 -5.181* x.^2 +9.067*x-5.289, Interval [0, 2]

Max Iterations = 40 Error tolerance = 0.000001000000

 Method Iterations Error Root TimeUsed

FalsePos 40 0.0013275239622 1.943958024512 0.00745204200000

Bisection 16 0.0000005319648 1.929840087891 0.00250129200000

Trisection 10 0.0000007183544 1.929837931210 0.00333941700000

Quadrisection 8 0.0000005319648 1.929840087891 0.00306541700000

Table3Summary for Comparison of Methods Iteration Counts

 Transcendental Equation

 Function f= @(x) m*exp(x).*(x-1)- Tanscendental, Interval [-2, 13]

Max Iterations = 40 Error tolerance = 0.000001000000

 Method Iterations Error Root TimeUsed

FalsePos 40 6.4962923172994 -1.999954114040 0.01695079200000

Bisection 28 0.0000004860667 0.999999988824 0.01603791700000

Trisection 18 0.0000005051780 0.999999988385 0.00994154100000

Quadrisection 14 0.0000004860667 0.999999988824 0.01140166700000

Table4 Summary for Comparison of Methods Iteration Counts

 Transcendental Equation

 Function x-cos(x), Interval [0, 6]

 Method Iterations Error Root TimeUsed

FalsePos 6 0.0000005254348 0.739084819263 0.00571970800000

Bisection 21 0.0000001075021 0.739085197449 0.00284170900000

Trisection 15 0.0000002517506 0.739085283639 0.00391850000000

Quadrisection 12 0.0000004910282 0.739084839821 0.00382875000000

III. HYBRID ALGORITHMS
First we describe the original hybrid algorithm, namely, Hybrid1 [6] based on classical Bisection and

False Position algorithms. Since the classical algorithms can be found in any text book, those algorithms are not

described here. For reference in hybrid algorithm, and for the sake of completeness, these algorithms are

delegated to an appendix.

In Hybrid1 algorithm, at each iteration, more promising root between the Bisection and False Position

approximate roots is selected for the next iteration. This curtails the unnecessary iterations in either method. It

was succeeded by more efficient Hybrid algorithms [7],[8] following it, leading to our new most proficient

algorithm Hybrid4. For convenience in notation, the parameters are prefixed by the name of the algorithm: b for

bisection, t for trisection, n for Newton-Raphson, q for quadrisection, and p for false Position

Hybrid1: Bisection and False Position Algorithm [6]

Input: f , [a, b], ∈s, maxIterations

Output: root r, k-number of iterations, error of approximation ∈a, bracketing interval [ak+1, bk+1]

//initialize

k = 0; a1 = a, b1 = b

Initialize bounded interval for bisection and false position

pak+1=bak+1=a1;pbk+1=bbk+1=b1

repeat

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 27 | Page

 pak+1=bak+1=ak; pbk+1=bbk+1=bk

compute the mid point the error

m=
ak +bk

2
, and ∈m = |f(m)|

compute the False Position point and error,

s = ak −
f(ak)(bk −ak)

f bk −f(ak)
and ∈p = |f(s)|

if |f(m)| < |f(s)|,

f(m) is closer to zero, Bisection method determines bracketing interval [bak+1, bbk+1]

r= m

∈a = ∈m

if f(ak)·f(r) > 0,

 bak+1 = r; bbk+1 = bk;

 else

bak+1 = ak; bbk+1 = r;

 endif

else

f(s) is closer to zero, False Position method determines bracketing interval [pak+1, pbk+1]

r= s

∈a = ∈p

if f(ak)·f(r) >0,

 pak+1 = r; pbk+1 = bk;

 else

pak+1 = ak; bk+1 = r;

endif

 endif

Since the root is bracketed by both [bak+1, bbk+1] and [pak+1, pbk+1], set

[ak+1, bk+1] = [bak+1, bbk+1] ∩ [pak+1, pbk+1] or

ak+1 = max(bak+1,pak+1);

 bk+1 = min (bbk+1,pbk+1);

 outcome: iteration complexity, root, and error of approximation

iterationCount = k

r = rk

error = ∈a = |f(r)|

k = k + 1

until |f(r)| <∈s or k >maxIterations

Hybrid2: Trisection and False Position Algorithm[7]

This function implements a blend of trisection and false position methods.

Input: The function f; the interval [a, b] where f(a)f(b) < 0 and the root lies in[a, b],

The absolute error (eps).

Output: The root (x), The value of f(x), Numbers of iterations (n), the interval [a, b] where the root lies in

n = 0; a1 := a; a2 := a; b1 := b, b2 := b

while true do

n := n + 1

 xT1 := (b + 2*a)/3

 xT2 := (2*b + a)/3

 xF := a − (f(a)*(b − a))/(f(b) − f(a))

 x := xT1

 fx := fxT1

if |f(xT2)|< |f(x)|

x := xT2

if |f(xF)| < |f(x)|

 x := xF

if |f(x)| <= eps

 return x, f(x), n, a, b

if fa * f(xT1) < 0

 b1 := xT1

else if f(xT1) * f(xT2) < 0

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 28 | Page

 a1 := xT1

 b1 := xT2

else

 a1 := xT2

if fa*f(xF) < 0

 b2 := xF;

else

 a2 := xF;

a := max(a1, a2) ; b := min(b1, b2)

end (while)

Hybrid 3: Trisection and Newton-Raphson Algorithm [8]

This algorithm is along the same lines as Hybrid 2, but with (1) instead of false position method, it uses

Newton-Raphson algorithm which requires differentiability of the function, (2) improved iteration count and

accuracy in the hybridization step: namely, the common interval in each iteration is computed by analyzing the

five function values and then mapped to parameter values for the optimal interval.

The Algorithm is as follows.

• Input: Function f(x), an Initial approximations x0 and absolute error eps.

• Output: Root x and number of iterations n

df(x):=f’(x); k:=0;

for k=1:n

p := (2*a + b)/3;

q := (a + 2*b)/3;

if |f(p)| < |f(q)|

then r := p - f(p)/df(p);

else r := q - f(q)/df(q);

end if;

if |f(r)| < eps

then

 return r, k;

else

find fv:={f(a),f(b),f(r),f(p),f(q)};

a := xa where fv max -ve;

b := xb where fv min +ve

end if;

end.

As indicated, this algorithm equires differentiability used in Newton-Raphson algorithm step. In

addition, this algorithm uses search from five function values for two values to determine the parameter

interval enclosing the root.

In the previous algorithms, two steps are used to coordinate two algorithms to hybridize. At each

iteration, determine (1) the promising approximation root (2) the common interval enclosing the approximate

root. In Hybrid1 and Hybrid2 algorithms, this simply reduces to intersection of two intervals so that common

interval contains the approximate root. No function value is involved in the search for common interval to

contain the predicted approximate root. In the Hybrid3 algorithm, it searches among five function values used

to determine two function values for the common interval. From these two function values, the function

parameters are determined to create the common parameter interval.
Note. Hybrid3 requires differentiability of the function as required by Newton Raphson algorithm.

New Hybrid Algorithm

Hybrid4 provides a more efficient approach to optimization: (1) Quadrisection algorithm is used instead

of bisection or trisection, (2) it eliminates the computation of common interval required by the foregoing

algorithms used to hybridize, This leads to more efficient algorithm for optimal root approximation and readily

available common interval without the calculations required by Hybrid1, Hybrid 2, and Hybrid3.Otherwise it

takes computing time, to calculate the common interval. It is based on Occam’s razor principle [9], Fig 1.The

Occam’s razor principle is a heuristic, not a proof. That is, when faced with competing choices, the simplest is

the accurate one. It will be shown that Occam’s Razor Principle works quite well in this case.

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 29 | Page

Figure1https://conceptually.org/concepts/occams-razor

Hybrid 4 uses Quadrisection and False Position methods. This is based on Occam’s razor principle [9].

Input a0,b0,ro, eps, imax, f

Output k, ak,bk,rk

for k=1:imax

 quadrisection iteration step determines

 ak,bk-,rk- from ak-1,bk-1,rk-1

 relable

ak,bk,rktoa,b,r-

 False-position iteration step

 input isa,b,r instead of oldak-1,bk-1,rk-1

 false position iteration step determines

 ak,bk,rk- from a,b,r

This makes [ak,bk] as the common interval readily available without any computation.

At the same time, using a,b,r instead of old ak-1,bk-1,rk-1, makes this step more optimal

 if f(rk)<eps

 returnk,ak,bk,rk

 end

endFor

Summarizing the foregoing algorithms, succinctly the iteration step in the algorithms are:

Hybrid1

 [bak,bbk,brk]= Bisection(ak-1,bk-1,rk-1,f)

 [pak,pbk,prk]=FalsePosition(ak-1,bk-1,rk-1,f)

The results of hybridization step are:

rk is better of brk, prk,

[ak,bk] is common to [bak,bbk], [pak,pbk],

rkbelongs to [ak,bk]

Hybrid 2

 [tak,tbk,trk]=Trisection(ak-1,bk-1,rk-1,f)

 [pak,pbk,prk]=FalsePosition(ak-1,bk-1,rk-1,f)

The outcomes of hybridization are:

rk is better of trk, prk,

[ak,bk] is common to [tak,tbk], [pak,pbk],

rkbelongs to [ak,bk]

Hybrid3

 [tak,tbk,trk]=Trisection(ak-1,bk-1,rk-1,f)

 [nak,nbk,nrk]=NewtonRaphson(ak-1,bk-1,rk-1,f)

The upshot of hybridization is:

rk as better of trk, nrk,

[ak,bk] is common from [tak,tbk], [nak,nbk] and nrk by analyzing { f(tak), f(tbk), f(nak),f(nbk), f(nrk})}then

finding [ak,bk] from { tak,tbk,nak,nbk, nrk}.

rkbelongs to [ak,bk]

Hybrid4 (new contribution)

https://conceptually.org/concepts/occams-razor

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 30 | Page

 [a,b,r]=Quadrisection(ak-1,bk-1,rk-1,f)

 [pak,pbk,prk]=FalsePosition(a,b,r,f)

The conclusion of hybridization is:

The interval [ak,bk] is readily available, because [pak,pbk] is itself the desired interval [ak,bk] containing rk, prk is

rk, the desired root. This algorithm is optimal in the number of iterations and the accuracy of approximate root.

There is no need to do any work for calculations.

IV. DISCUSSION
Many researchers focused their attention toward using such methods to solve their problems. The roots

are calculated, along with the number of iterations within a specified tolerance. All the existing methods are

compared. Error analysis is performed. It is determined that new hybrid algorithm outperforms the other

algorithms.

A. Empirical Evidence Testing

We have tested our new algorithm side by side with other hybrid algorithms on diverse examples found

in article in then literature to validate that new algorithm outperforms the conclusion made by them. Tables 5-

11give a synopsis of some functions.

B. Experiments in Matlab

Some researchers used Mirosoft visual C++ to find roots, we used MatlabR2022A 64 bit (maci64) on

MacBook Pro MacOS Sonoma 14.1.116GB Apple M1Pro .Along with several different functions, we use the

same quadratic equation for root of x
2
-x-2 = 0. Overall we have validated that the new algorithm performs better

than all the hybrid algorithms. These tests indicate that hybridization with false position algorithm is still

preferable to hybridization with Newton-Raphson possibly because the NR method requires that the function be

differentiable.

Tables 5-11 are from the functions used in the literature. In all the function in this table the upperbound on the

number of iterations is 40 and error bound is 10
-6

. These are some benchmark test functions from recent hybrid

algorithms.

Table 5 Function f= @(x) m*exp(x).*(x-1)- Transcendental, Interval [-2, 13]

 Method Iterations Error Root TimeUsed

Hybrid1: Bisection-FalsePos 10 0.0000003170838 0.999999992709 0.02568770800000

Hybrid2: Trisection FalsePos 8 0.0000000395461 0.999999999091 0.02214395800000

Hybrid3: Trisection-NewtonRaph 10 6.4960935953574 -2.000000000000 0.02972425000000

Hybrid4: Quadrisection-FalsePos 6 0.0000001375199 0.999999996838 0.01611329200000

Table 6 Function f(x) = 0.986*x.^3 -5.181* x.^2 +9.067*x-5.289 Non-Linear, Interval [0, 2]

 Method Iterations Error Root TimeUsed

Hybrid1: Bisection-FalsePos 7 0.0000008959635 1.929835876074 0.00868341600000

Hybrid2: Trisection FalsePos 5 0.0000002142064 1.929843764485 0.00650604200000

Hybrid3: Trisection-NewtonRaph 5 0.0000001094874 1.929847509586 0.01198429200000

Hybrid4: Quadrisection-FalsePos 4 0.0000000494278 1.929845670976 0.00769437500000

Table 7 Function x-cos(x), Interval [0, 1] -Transcendental

 Method Iterations Error Root TimeUsed

Hybrid1: Bisection-FalsePos 5 0.0000000059872 0.739085129638 0.02441987500000

Hybrid2: Trisection FalsePos 4 0.0000001695627 0.739085031900 0.02608075000000

Hybrid3: Trisection-NewtonRaph 4 0.0000002673808 0.739085292978 0.02653025000000

Hybrid4: Quadrisection-FalsePos 2 0.0000005367912 0.739084812477 0.02592866700000

Table 8 Function f(x) = 1./(x-3)-6, Interval [3.100000e+00, 4] -Non-linear

 Method Iterations Error Root TimeUsed

Hybrid1: Bisection-FalsePos 7 0.0000004800000 3.166666680000 0.00750858300000

Hybrid2: Trisection FalsePos 3 0.0000000000000 3.166666666667 0.00563233400000

Hybrid3: Trisection-NewtonRaph 6 0.0000001279518 3.166666663112 0.01658004200000

Hybrid4: Quadrisection-FalsePos 3 0.0000000034154 3.166666666762 0.00622525000000

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 31 | Page

V. CONCLUSION
We have designed and implemented a new algorithm, a proficient hybrid of Quadrisection and Regula

Falsi methods. The algorithm was implemented in Matlab R2022A 64 bit (maci64) on MacBook Pro MacOS

Sonoma 14.1.116GB Apple M1Pro. The implementation tests in Tables 5-11 indicate that it outperforms all the

above cited algorithms all the time by a considerable margin. The experiments on numerous datasets used in the

literature justify that the new algorithm is effective both conceptually and computationally. Thus, this paper

provides a fastest algorithm to the repertoire of hybrid algorithms.

VI. APPENDIX
There is no universal algorithm optimal for root approximation that works on all the functions on all the

domain intervals. We provide a summary of classical methods here for reference. In the paper, we have

provided a new hybrid algorithm that is based on the classical methods and outperforms both the classical and

hybrid methods.
There are four classical methods for finding roots of non-linear equations: Bisection, Regula Falsi, Newton-

Raphson, Secant. For completeness, we describe these methods briefly for (1) root approximation, (2) error

calculation, and (3) termination criteria. Then we use Occam’s razor principle to select the optimal method for

error calculation and termination criteria.
We constrain this discussion to finding a single root instead of all the roots of an equation. In case, an

equation has several roots, we can delineate an interval where the desired root is to be found.

A. Bisection Method

The Bisection method is (1) based on binary chopping of irrelevant subintervals, (2) virtually binary

search, and (3) guaranteed to converge to the root. Bisection method is static, the length of the subinterval at

each iteration is independent of the function. No matter what the function is, the root-error upper bound is fixed

at each iteration and can be determined a priori. By specifying the root-error tolerance, the upper bound on the

number of iterations can be predetermined quickly [10].

Problem: If a function f:[a, b]R (1) is continuous and (2) f(a) and f(b) are of opposite signs, i.e., f(a)•f(b) < 0,

then there exists a root r∈ [a, b] such that f(r) = 0.

Let [a1,b1] = [a, b] be the initial interval of continuity of f. The first approximate root is

 r1 =
𝑎1+𝑏1

2
, middle point of the interval [a1,b1]

the actual root lies in the interval [a1, r1] or [r1,b1],

if f(r1)=0, r1 is the root.

if f(a1) and f(r1) are of the opposite sign, f(a1)•f(r1) < 0, true root lies in [a1, r1]

if f(r1) and f(b1) are of the opposite sign, f(r1)•f(b1) < 0, true root lies in [r1,b1],

The new interval is denoted by [a2,b2]

Table 10 Function f(x) = x^2 - x - 2, Interval [1, 5] - quadratic

 Method Iterations Error Root TimeUsed

Hybrid1: Bisection-FalsePos 5 0.0000000020955 1.999999999302 0.01563458300000

Hybrid2: Trisection-FalsePos 5 0.0000000284792 1.999999990507 0.01726020800000

Hybrid3: Trisection-NewtonRaph 6 0.0000009078811 2.000000302627 0.04992987500000

Hybrid4: Quadrisection-FalsePos 1 0.0000000000000 2.000000000000 0.00655712500000

Table 11 Function f(x) = x^2 - x - 2, Interval [1, 6] - quadratic

 Method Iterations Error Root TimeUsed

Hybrid1: Bisection-FalsePos 6 0.0000000658628 1.999999978046 0.00301462500000

Hybrid2: Trisection FalsePos 2 0.0000000000000 2.000000000000 0.00264712500000

Hybrid3: Trisection-NewtonRaph 6 0.0000006365309 2.000000212177 0.00593533300000

Hybrid4: Quadrisection-FalsePos 2 0.0000000113519 1.999999996216 0.00254025000000

Table 9 Function f(x) = x^2 - 2 - Non-Linear, Interval [1, 3] - quadratic

 Method Iterations Error Root TimeUsed

Hybrid1: Bisection-FalsePos 6 0.0000000217511 1.414213554683 0.00548650000000

Hybrid2: Trisection FalsePos 5 0.0000000496455 1.414213544821 0.00401850000000

Hybrid3: Trisection-NewtonRaph 6 0.0000002000287 1.414213633094 0.01707441700000

Hybrid4: Quadrisection-FalsePos 3 0.0000001440045 1.414213511460 0.00423837500000

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 32 | Page

At each iteration, new root and next sub-interval is generated.

In general, for each iteration k, the approximation

rk=
𝑎𝑘 +𝑏𝑘

2
 is middle point of [ak, bk],

Either rk is the root or

if f(ak)•f(rk) < 0, the root lies in [ak, rk]

else if f(rk)•f(bk) < 0, the root lies in [rk, bk]

Then the new interval is denoted by [ak+1,bk+1] with rk as one of its end points

A.1 Advantages of Bisection Method

Since the method brackets the root, at each iteration the length of root-bracketing interval is scaled to half

the length. Thus, the method guarantees the decrease in the error in the approximate root at each iteration. The

convergence of Bisection method is certain as it is simply based on halving the bracketing interval containing

the root.

A.2 Drawbacks of Bisection Method

Though the convergence of Bisection method is guaranteed, its rate of convergence is too slow and as

such it is quite difficult to extend to use for systems of equations. If one of the initial endpoints is closer to the

root, Bisection method does not take advantage of this information, it will take larger number of iterations to

reach the root [10].

B. False Position (Regula Falsi) Method[11], [12]

Motivation for innovative methods arises from the poor performance of Bisection method. The False

Position method is known by various names: Double False Position, Regula Falsi method, linear interpolation

method. It is a very original method for solving equations in one unknown. This method differs from Bisection

method in the way the estimates are calculated. False Position method is a dynamic method, it takes advantage

of the location of the root to make a conceivably better appropriate selection. Unfortunately, this method is not

satisfactory as expected, for all functions, see Figure 2,3,4,5.

Here also the function f:[a, b]R (1) is continuous and (2) f(a) and f(b) are of opposite signs, i.e.,

f(a)•f(b)<0. The algorithm uses a, b as the two initial estimates a1, b1 for the root. The False Position method

uses two start values ro = a1, r1 =b1, to compute successive values

rn = rn-1 -
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 for natural number n ≥2

the approximations, rn , are ensured to be bracketed in [an, , bn] depending on f(an-1)•f(rn)<0 for [an-1,rn] and

[rn, bn-1] depending on as in the case of Bisection method,

B.1 Justification: Error in Bisection method is straight forward; in each iteration root approximation error is

halved, i.e. root approximation error in the nth step is no larger than
𝑏−𝑎

2𝑛 . This is not the case for False Position

method. If a is sufficiently close to the root r, then f(a) is close to f(r) = 0 due to continuity of f. The slope of

the secant line slope,
𝑓 𝑏 −𝑓(𝑎)

𝑏−𝑎
 , is approximately equal to

𝑓 𝑏

𝑏−𝑟
. The closer b is to r, the closer the secant line is to

tangent, f’(r). Though, it is not required that f be differentiable. The closer b is to r, faster the convergence of

iterations [12].

B.2 Advantages of False Position Method

It is guaranteed to converge due to decreasing length of root-bracketing interval. It is fast when you know

the linear nature of the function.

B.3 Drawbacks of False Position Method

For False Position method, there is no way to tell the number of iterations needed for convergence. The

False Position method is expected to be faster than Bisection method. If we cannot ensure that the function

can be interpolated by a linear function, then applying the False Position method can result in worse results

than the Bisection method. The problem occurs when the function is convex, concave up or concave down

According to [10], for concave down function, left end point remains stationary and right end point updates in

each iteration. For concave up function, right end point remains stationary and left end point updates in each

iteration. This is not an accurate statement, it works some of the functions, not all the functions. Figures 2, 3, 4,

5 contradict this statement. It depends on the convexity of the function, not concavity up or down. When the

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 33 | Page

root is very close to the end points of the interval, convergence can become extremely slow. Visuals are helpful

insight to comprehend the behavior of algorithms.

In these examples, four functions are used with same tolerance and the upper limit of 10 iterations for

display purposes. The purpose is to show how the algorithms work for False Position method. In the interest of

simplicity of plots, we terminated the algorithms before reaching the error-tolerance.

Figure 2. Convex Function Concave up, right end point fixed

Figure 3. Convex Function Concave up, right end point fixed

Figure 4. Convex Function Concave down, right end point fixed

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 34 | Page

Figure 5. Convex Function Concave down, left end point fixed

C. Newton-Raphson Method [3]

Newton-Raphson method is also called a fixed point iteration method. This method requires that the

function be differentiable. If the function f(x) is differentiable on the domain of the function, and r0 is initial

guess, then the first approximation r1 is defined by

 r1 = r0 - f(r0)/f’(r0)

and successive approximations are

rn = rn-1 - f(rn-1)/f’(rn-1) for natural numbers n ≥ 2.

This method converges provided |x - f(x)/f’(x)| < 1 for x in the domain of definition. For functions where

there is a singularity and it reverses sign at the singularity, Newton-Raphson method may converge on the

singularity.

C.1 Advantages of the Newton-Raphson method

The convergence rate is linear and this method is very fast as compared to Bisection and False Position

methods. If we know the multiplicity, m, of the root, it can be further improved with faster convergence to the

root [3]. The updated iteration formula becomes,

rn = rn-1 – m f(rn-1)/f’(rn-1) for natural numbers n ≥ 1.

Note. If f
(k)

(x) = 0, for all integers k < m, then multiplicity of root is m.

C.2 Disadvantages of the Newton-Raphson method;

The only pitfall is that it fails if the derivative, f’(x), is near zero at some iteration. For example, Newton-

Raphson method fails to compute r1 for f(x) = x
2
 -1 where r0 = 0. But it does not create a problem in some cases

where singularity in f’(x) cancel with f(x). for example, f(x) = x
3
 with r0 = 0 does result in r1 = 0.

D. Secant Method, Modified Secant Method[13]

The Secant method also requires that the function be differentiable. When it is not easy to compute the

derivative of the function, the Secant method approximates the derivative with the slope of a secant line. That is,

in the absence of derivative of the function, Secant method is a modification of the Newton-Raphson method. In

fact, it does not need differentiability as well as bracketing. It is similar to False Position method. The only

difference is that False Position method ensures that approximations are bracketed and Secant method simply

uses the last two values to approximate the tangent. Thus, the Secant method is not guaranteed to converge.

The convergence rate of the Secant method is superlinear. Thus, the convergence rate is between that of

the Bisection method and the Newton-Raphson’s method. The Secant method requires two initial values,

whereas Newton-Raphson method required only one start values. If the function f(x) is differentiable, r1 can be

computed from r0. Now r0, r1 are two is initial guesses, then the approximations of the secant method can be

written as

rn = rn-1 -
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 for natural numbers n ≥ 2

For still better estimate of the slope of the Secant line, we can define a small constant delta, 𝛿, so

that it can uniformly replace rn-2with rn--1 - 𝛿 as

rn = rn-1 -
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 = rn-1 -

𝑓 𝑟𝑛−1 𝛿

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−1−𝛿)

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 09 - Issue 11 || November 2023 || PP. 23-35

www.ijlret.com 35 | Page

The success of this method is questionable if 𝛿 is not chosen sufficiently small. One way will be set 𝛿< |rn-2-rn--1|

D.1 Advantages and Shortcomings

It has the advantage for finding a bracketing-interval quickly where the root lies, but choice of delta

must be made adaptively, else the algorithm runs the risk of missing the root.

Some researchers, experimented on f(x) = x - cos(x) on a close interval [0,1] and concluded that secant

method is better than Bisection and Newton-Raphson method [14], [15]. It is not accurate to make a general

conclusion statement from one function.

VII. REFERENCES
[1]. Donna Calhoun

[2]. https://math.boisestate.edu/~calhoun/teaching/matlab-tutorials/lab_16/html/lab_16.html accessed

December 2023

[3]. S. Sapna, Biju R. Mohan, Comparative Analysis of Root Finding Algorithms for Implied Volatility

Estimation of Ethereum Options, Computational Economics, https://doi.org/10.1007/s10614-023-10446-

8, springer, August, 2023, pp.1-37.

[4]. Steven C Chapra and Raymond P Canale, Numerical Methods for Engineers, 7th Edition, McGraw-Hill

Publishers, 2015.

[5]. C. Thinzar, and N. Aye, "Detection the storm movement by sub pixel registration approach of Newton

Raphson method" International Journal of eEducation, eBusiness, eManagement and eLearning, Vol.

4, No. 1, 2014.

[6]. Sivanandam S., Deepa S. (2008) Genetic Algorithm Implementation Using Matlab. In: Introduction

to Genetic Algorithms. Springer, Berlin, Heidelberg, pp. 211-262, DOIhttps://doi.org/10.1007/978-

3-540-73190-0_8.

[7]. Sabharwal, C. L. (2019). Blended root finding algorithm outperforms bisection and regulafalsi

algorithms. Mathematics, 7(11), 1118.

[8]. Badr, E., Almotairi, S., & Ghamry, A. E. (2021). A comparative study among new hybrid root finding

algorithms and traditional methods. Mathematics, 9(11), 1306.

[9]. Srinivasarao, Thota A Blended Root-Finding Algorithm for Solving Transcendental Equations SNAPP,

International Journal of Applied and Computational Mathematics, https://doi.org/10.21203/rs.3.rs-

2956091/v1, May 2023, pp.1-9

[10]. Occam’Razor: https://conceptually.org/concepts/occams-razor

[11]. John H. Mathews and Kurtis K. Fink Numerical Methods Using Matlab, 4th Edition, 2004 ISBN: 0-13-

065248-2 Prentice-Hall Inc. Upper Saddle River, New Jersey, USA

[12]. Wikipedia https://en.wikipedia.org/wiki/False_position_method#Two_historical_types accessed

December 2023
[13]. Douglas Wilhelm Harder,

https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/10RootFinding/falseposition/, accessed Jun 2019.

[14]. Ehiwario, J.C., Aghamie, S.O.; Comparative Study of Bisection, Newton-Raphson and Secant Methods

of Root- Finding Problems; IOSR Journal of Engineering (IOSRJEN) www.iosrjen.org; ISSN (e): 2250-

3021, ISSN (p): 2278-8719; Vol. 04, Issue 04 (April. 2014), ||V1|| PP 01-07.

[15]. Tanistha Nayak ,Tirtharaj Dash Solution To Quadratic Equation Using Genetic Algorithm , Proceedings

Of National Conference On AIRES-2012, Andhra University Https://Arxiv.Org/Pdf/1306.4622

[16]. Srivastava, R.B and Srivastava, S (2011), Comparison of Numerical Rate of Convergence of Bisection,

Newton and Secant Methods. Journal of Chemical, Biological and Physical Sciences. Vol 2(1) pp 472-

479, 2011.

https://math.boisestate.edu/~calhoun/teaching/matlab-tutorials/lab_16/html/lab_16.html
https://doi.org/10.1007/s10614-023-10446-8
https://doi.org/10.1007/s10614-023-10446-8
https://doi.org/10.21203/rs.3.rs-2956091/v1
https://doi.org/10.21203/rs.3.rs-2956091/v1
https://conceptually.org/concepts/occams-razor
https://en.wikipedia.org/wiki/False_position_method#Two_historical_types
https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/10RootFinding/falseposition/
https://arxiv.org/Pdf/1306.4622

