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Abstract: Finding roots of an equation is a fundamental problem in diverse fields. Mostly optimization 

problems lead to solving non-linear equations for optimizing calculation of the value of a parameter, that is the 

root of the equation. Numerical techniques are used when analytic solution is no available. We design and 

implement a new algorithm that is proficient hybrid of Quadrisection and Regula Falsi methods. The 

implementation results validate that the new algorithm outperforms the existing hybrid algorithms. Thus, we 

contribute an essential hybrid algorithm to the repertoire of root finding algorithms. 
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I. INTRODUCTION 
Finding the roots of an equation is a fundamental problem in engineering fields.  All disciplines in 

physical and social sciences, including Computer Science, Engineering (biological, civil, electrical, mechanical), 

and social sciences (psychology, economics, businesses) etc,, require the optimal solution to recurring non-

linear problems.  The problems such as minimization, Target Shooting, Orbital Motion, Plenary Motion, Social 

Sciences, Financial Stock Analysis etc, lend themselves to finding roots of non-linear functional equations [1]. 

There is a thorough study by Sapna and Mohan in the financial sector away from mathematics [2]. 

There are classical root-finding algorithms: Bisection, False Position, Newton-Raphson, Secant, 

Modified Secant methods for finding the roots of an equation f(x) = 0. Every text book on Numerical Methods 

has details of these methods [3], [4], [5].  Even though classical methods have been developed and used for 

decades, yet enhancements are progressively made to improve the performance of these methods, barring new 

methods.  

Recently papers are making differing claims on their performance and seeking better performing 

methods. In response, better algorithms that are hybrid of classical methods Bisection, Trisection, with False 

Position, Newton Raphson methods been developed, namely Hybrid1 [6],Hybrid2 [7], and Hybrid3 [8]. Inspired 

by these three algorithms, we have created a new adept algorithm Hybrid4, that is hybrid of Quadrisection and 

false Position that is at par or better than Hybrid1, Hybrid2, and Hybrid3 in terms of computational efficiency, 

solution accuracy (less error).and reduced iteration count required to terminate within the specified error 

tolerance. We present Hybrid4 that further optimizes these algorithms one step further by reducing the 

computing time and increasing the efficiency of the algorithm.  The new hybrid algorithm is described in 

Section3 and simulations validating the performance of the new algorithm are in Section 4. 

The paper is organized as follows.  Section II is brief description of classical methods Bisection, Regula 

Falsi, Newton-Raphson, Secant; their strengths and pitfalls. In addition, Trisection and new Quadrisection 

methods are included. Section III describes hybrid algorithms and new algorithm that outpaces the previous 

hybrid algorithms. Section IV presents experimental results comparing the performance of previous hybrid 

algorithms with the new Algorithm. Section V is conclusion.  

 

II. BACKGROUND 
The classical algorithms Bisection, False Position, Newton-Raphson, Secant methods are readily found in 

any text book in detail and iterated in most articles[2].  For this reason, their stand alone derivations are passed 

over to an appendix and skipped in this background section. Thus, for the sake of completeness, these 

algorithms are delegated to an appendix for reference.  To enhance the performance of Bisection method, Bader 

et.al [7] designed a Trisection method that supersedes Bisection method in iterations performed, computation 

time, and error of approximation at a small cost on number of function computations. We extend Trisection 

algorithm to a Quadrisection algorithm that is at par with Trisection algorithm or better at iterations performed, 

computation CPU time, and error in approximate root. These algorithms are used in conjunction with False 

Position and Newton-Raphson methods to create hybrid algorithm. The effectiveness and efficacy of root 

approximation is measured by number of iterations in root calculation and the accuracy of the termination of an 

algorithm. The metrics for measuring error in the number iterations and stopping criteria are given first. 
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2.1 Metric for Error Measurement 

There are various ways to measure error in approximate root of an equation in successive iterations to 

continue to a more accurate approximate root. To determine the root at nth iteration, rn for which f(rn)≅ 0, we 

proceed to analyze it as follows. 

 

The iterated root approximation error can be 

RelativeRootError =   
𝑟𝑛  − 𝑟𝑛−1

𝑟𝑛
  

or  

AbsoluteRootError =   𝑟𝑛 − 𝑟𝑛−1  
 

Since a root can be zero, in order to avoid division by small numbers, it is preferable to use absolute error 
 𝑟𝑛 − 𝑟𝑛−1 for convergence test. Another reason for discarding relative error this is that if rn = 2

-n
, 

then 
𝑟𝑛  − 𝑟𝑛−1

𝑟𝑛
 is always 1, it can never be less than 1, so the root-error tolerance test cannot be effectively 

satisfied, that is, this test does not work. 

Since function value is expected to be zero at the root, an alternate cognitively more appealing error test 

is to use f(rn)  for error consideration instead of rn. There are three versions for this concept, they are 

RelativeValueError = 
𝑓 𝑟𝑛  – 𝑓 𝑟𝑛−1 

𝑓 𝑟𝑛  
  

or 

AbsoluteVlaueError =    𝑓(𝑟𝑛 )  −  𝑓(𝑟𝑛−1)  
or   

TrueValueError =      𝑓(𝑟𝑛 )  
 

for comparison criteria.   

 

Since f(rn) is to be close to zero near the root, in order to avoid divide by small numbers, we discard 

using  
𝑓(𝑟𝑛 ) − 𝑓(𝑟𝑛−1)

𝑓(𝑟𝑛 )
  . Further,  since  𝑓(𝑟𝑛 )  −  𝑓(𝑟𝑛−1) can be  close to zero without |f(rn)| being close to zero, 

we discard using  𝑓(𝑟𝑛 )  −  𝑓(𝑟𝑛−1) also in favor of using only 𝑓(𝑟𝑛 ) , trueValue error. For example, f(rn)= (n-

1)/n is such an example.  We avoid using the first two criteria for this reason and exploit the last one,  𝑓(𝑟𝑛 ) . 
Now we are left with two options 𝑟𝑛 − 𝑟𝑛−1 and  𝑓(𝑟𝑛 ) to consider forerror analysis. Again, since rn and  rn-1 can 

be closer to each other without f(rn) being closer to zero. For examplern= 1 +1/n, f(rn) = rn. Between the options 
 𝑟𝑛 − 𝑟𝑛−1  and  𝑓(𝑟𝑛 ) , we find that 𝑓(𝑟𝑛 )  is the only reliable metric for analyzing the approximation error. 

Hence, we use, 𝑓(𝑟𝑛 ) , as the criteria for comparing with tolerance error analysis for all the methods uniformly. 

 

2.2 Metric for Stopping Criteria, Halting Condition 

Stopping criteria plays a major role in simulations. The iteration termination (stopping) criteria for False 

Position method is different from Bisection method. Tradeoff between accuracy and efficiency is accuracy of 

the outcome.  In order to obtain n significant digit accuracy [3], let∈𝑠 be stopping error and let∈𝑎  be the 

approximation error at any iteration.  If∈𝑎<∈𝑠, the algorithm stops iterations. With∈𝑠= 5/10
n-1

, we have n 

significant digit accuracy in the outcome.   The bisection algorithm is trivial, here trisection and quadrisection 

algorithm’s stopping criteria are described. 

Here we describe two enhancements to bisection algorithm. Trisection algorithm [7] and Quadrisection, 

new algorithm, each algorithm has four comparison tests and seven function evaluation references in 

implementation. Thus, the Quadrisection algorithm uses the same amount of computation resources as 

Trisection algorithm. 

But the number of iterations bn (Bisection),tn (Trisection),qn (Quadrisection) required by the Bisection, 

Trisection, and Quadrisection algorithms on [a,b] with stopping tolerance epsare 

bn =log{(b-a)/tol}  tn=(0.63) log{(b-a)/tol}  qn= (0.5) log{(b-a)/tol}. 

 

Trisection algorithm is 37% faster than Bisection algorithm, Quadrisection algorithm takes 13% fewer 

iterations than Trisection algorithm to converge within the desired tolerance. 

In addition, as observed below in each algorithm, in each iteration, there is no change in the computation 

time: seven references to function evaluation and four references to compare test between Trisection and 

Quadrisection algorithms.. 
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2.3 Algorithms 

2.3.1 Trisection Algorithm [7]. 

• Input: Function f(x), Initial approximations [a,b] and absolute error eps. 

• Output: Approximate root r, enclosing interval, and number of iterations k 

for k=1 to n 

p := (2*a +b)/3; q := (a +2*b)/3; 

if |f(p)| < |f(q)|  

r := p  

else  

r := q  

endif; 

if |f(r)| < eps  

return r,a,b, k; 

else if f(a)*f(p) < 0   

b:=p;  

else if f(p)*f(q) < 0  

a:=p;  

b:=q;  

else  

a:=q;  

end if; 

end for 

 

2.3.2Quadrisection Algorithm (new) 

• Input: function f(x), Initial interval [a,b] and absolute error eps. 

• Output: Approximate root r, enclosing interval, and number of iterations k 

for k=1 to n 

p:= (3*a +b)/4; m := (2*a +2*b)/4; q := (a +3*b)/4; 

      r=m; 

if f(a)*f(m)< 0 

b=m; r=p; 

if f(a)*f(p)<0 

  b=p  

else  

a=p  

endif 

else  

a=m;r=q; 

if f(a)*f(q)<0 

  b=q  

else  

a=q  

endif 

endif 

if |f(r)| < eps  

 return r, a,b, k; 

endif 

endfor 

 

The Trisection algorithms [7],[8] and a Quadrisection algorithm are computationally equivalent in each 

iteration, but Quadrisection algorithm requires fewer iterations to converge, see Table1,2,3. It shows that in the 

sequence of innovations, Quadrisection algorithm is ahead of the other algorithms with respect to loop iteration 

and accuracy in approximation of the root. These benchmark functions appear in recent papers [7],[8], see 

Tables 1,2,3,4. The functions and the interval of definition are generic unbiased of any algorithm. 
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Table 1 Summary for Comparison of Methods Iteration Counts   

  Non-Linear Equation 

  Function f(x) = x^2 - x - 2, Interval [1, 6]  

Max Iterations =  40   Error tolerance =   0.000001000000  

 Method  Iterations  Error    Root    TimeUsed 

FalsePos   28   0.0000007049318 1.999999765023  0.00875641700000 

Bisection   22   0.0000007152558 2.000000238419  0.00317154200000   

Trisection  14   0.0000009408381 1.999999686387  0.00561808300000 

Quadrisection 11   0.0000007152558 2.000000238419  0.00425629100000 

 

Table2Summary for Comparison of Methods Iteration Counts   

  Non-Linear Equation 

  Function  f(x) = 0.986*x.^3 -5.181* x.^2 +9.067*x-5.289, Interval [0, 2]  

Max Iterations =  40   Error tolerance =   0.000001000000  

 Method  Iterations  Error     Root    TimeUsed 

FalsePos    40   0.0013275239622  1.943958024512  0.00745204200000 

Bisection    16   0.0000005319648  1.929840087891  0.00250129200000   

Trisection   10   0.0000007183544  1.929837931210  0.00333941700000 

Quadrisection     8   0.0000005319648  1.929840087891  0.00306541700000 

 

Table3Summary for Comparison of Methods Iteration Counts   

  Transcendental Equation 

  Function       f= @(x) m*exp(x).*(x-1)- Tanscendental, Interval [-2, 13]  

Max Iterations =  40   Error tolerance =   0.000001000000  

 Method  Iterations  Error     Root    TimeUsed 

FalsePos    40   6.4962923172994  -1.999954114040 0.01695079200000 

Bisection    28   0.0000004860667  0.999999988824  0.01603791700000   

Trisection   18   0.0000005051780  0.999999988385  0.00994154100000 

Quadrisection  14   0.0000004860667  0.999999988824  0.01140166700000 

 

Table4  Summary for Comparison of Methods Iteration Counts   

  Transcendental Equation 

  Function   x-cos(x),  Interval [0, 6]  

 Method  Iterations  Error     Root    TimeUsed 

FalsePos    6   0.0000005254348  0.739084819263  0.00571970800000 

Bisection    21   0.0000001075021  0.739085197449  0.00284170900000   

Trisection   15   0.0000002517506  0.739085283639  0.00391850000000 

Quadrisection    12   0.0000004910282  0.739084839821  0.00382875000000 

 

III. HYBRID ALGORITHMS 
First we describe the original hybrid algorithm, namely, Hybrid1 [6] based on classical Bisection and 

False Position algorithms. Since the classical algorithms can be found in any text book, those algorithms are not 

described here. For reference in hybrid algorithm, and for the sake of completeness, these algorithms are 

delegated to an appendix. 

In Hybrid1 algorithm, at each iteration, more promising root between the Bisection and False Position 

approximate roots is selected for the next iteration. This curtails the unnecessary iterations in either method. It 

was succeeded by more efficient Hybrid algorithms [7],[8] following it, leading to our new most proficient 

algorithm Hybrid4. For convenience in notation, the parameters are prefixed by the name of the algorithm: b for 

bisection, t for trisection, n for Newton-Raphson, q for quadrisection, and p for false Position 

 

Hybrid1: Bisection and False Position Algorithm [6] 

Input: f , [a, b], ∈s,  maxIterations 

Output: root r, k-number of iterations, error of approximation ∈a, bracketing interval [ak+1, bk+1] 

//initialize 

k = 0; a1 = a, b1 = b 

Initialize bounded interval for bisection and false position 

pak+1=bak+1=a1;pbk+1=bbk+1=b1 

repeat 
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    pak+1=bak+1=ak; pbk+1=bbk+1=bk 

compute the mid point the error 

m= 
ak +bk

2
, and ∈m = |f(m)| 

compute the False Position point and error, 

s = ak − 
f(ak )(bk −ak )

f bk  −f(ak )
and ∈p = |f(s)| 

if |f(m)| < |f(s)|, 

f(m) is closer to zero, Bisection method determines bracketing interval [bak+1, bbk+1] 

r= m 

∈a = ∈m 

if f(ak)·f(r) > 0, 

 bak+1 = r; bbk+1 = bk; 

        else 

bak+1 = ak; bbk+1 = r; 

  endif 

else 

f(s) is closer to zero, False Position method determines bracketing interval [pak+1, pbk+1] 

r= s 

∈a = ∈p 

if f(ak)·f(r) >0, 

              pak+1 = r; pbk+1 = bk; 

            else 

pak+1 = ak;  bk+1 = r; 

endif 

        endif 

Since the root is bracketed by both [bak+1, bbk+1] and [pak+1, pbk+1], set 

[ak+1, bk+1] = [bak+1, bbk+1] ∩ [pak+1, pbk+1] or  

ak+1 = max(bak+1,pak+1); 

    bk+1 = min (bbk+1,pbk+1); 

 outcome: iteration complexity, root, and error of approximation 

iterationCount = k 

r = rk 

error = ∈a = |f(r)| 

k = k + 1 

until |f(r)| <∈s  or k >maxIterations 

 

Hybrid2: Trisection and False Position Algorithm[7] 

This function implements a blend of trisection and false position methods. 

Input: The function f; the interval [a, b] where f(a)f(b) < 0 and the root lies in[a, b], 

The absolute error (eps). 

Output: The root (x), The value of f(x), Numbers of iterations (n), the interval [a, b] where the root lies in 

n = 0; a1 := a; a2 := a; b1 := b, b2 := b 

while true do 

n := n + 1 

 xT1 := (b + 2*a)/3 

 xT2 := (2*b + a)/3 

 xF := a − (f(a)*(b − a))/(f(b) − f(a)) 

 x := xT1 

 fx := fxT1 

if |f(xT2)|< |f(x)| 

x := xT2 

if |f(xF)| < |f(x)| 

 x := xF 

if |f(x)| <= eps 

 return x, f(x), n, a, b 

if fa * f(xT1) < 0 

 b1 := xT1 

else if f(xT1) * f(xT2) < 0 
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 a1 := xT1 

 b1 := xT2 

else 

 a1 := xT2 

if fa*f(xF) < 0 

 b2 := xF; 

else 

 a2 := xF; 

a := max(a1, a2) ; b := min(b1, b2)           

end (while) 

 

Hybrid 3: Trisection and Newton-Raphson Algorithm [8] 

This algorithm is along the same lines as Hybrid 2, but with (1) instead of false position method, it uses 

Newton-Raphson algorithm which requires differentiability of the function, (2) improved iteration count and 

accuracy in the hybridization step: namely, the common interval in each iteration is computed by analyzing the 

five function values and then mapped to parameter values for the optimal interval. 

The Algorithm is as follows. 

• Input: Function f(x), an Initial approximations x0 and absolute error eps. 

• Output: Root x and number of iterations n  

df(x):=f’(x); k:=0;  

for k=1:n 

p := (2*a + b)/3;  

q := (a + 2*b)/3; 

if |f(p)| < |f(q)|  

then r := p - f(p)/df(p);  

else r := q - f(q)/df(q); 

end if; 

if |f(r)| < eps  

then 

 return r, k; 

else  

find fv:={f(a),f(b),f(r),f(p),f(q)};  

a := xa where fv max -ve;  

b := xb where fv min +ve 

end if; 

end. 

 

As indicated, this algorithm equires differentiability used in Newton-Raphson algorithm step. In 

addition, this algorithm uses search from five function values for two values to determine the parameter 

interval enclosing the root. 

In the previous algorithms, two steps are used to coordinate two algorithms to hybridize. At each 

iteration, determine (1) the promising approximation root (2) the common interval enclosing the approximate 

root. In Hybrid1 and Hybrid2 algorithms, this simply reduces to intersection of two intervals so that common 

interval contains the approximate root. No function value is involved in the search for common interval to 

contain the predicted approximate root. In the Hybrid3 algorithm, it searches among five function values used 

to determine two function values for the common interval. From these two function values, the function 

parameters are determined to create the common parameter interval.  
Note. Hybrid3 requires differentiability of the function as required by Newton Raphson algorithm.  

 

New Hybrid Algorithm 

Hybrid4 provides a more efficient approach to optimization: (1) Quadrisection algorithm is used instead 

of bisection or trisection, (2) it eliminates the computation of common interval required by the foregoing 

algorithms used to hybridize, This leads to more efficient algorithm for optimal root approximation and readily 

available common interval without the calculations required by Hybrid1, Hybrid 2, and Hybrid3.Otherwise it 

takes computing time, to calculate the common interval. It is based on Occam’s razor principle [9], Fig 1.The 

Occam’s razor principle is a heuristic, not a proof. That is, when faced with competing choices, the simplest is 

the accurate one.  It will be shown that Occam’s Razor Principle works quite well in this case. 
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Figure1https://conceptually.org/concepts/occams-razor 

 

Hybrid 4 uses Quadrisection and False Position methods. This is based on Occam’s razor principle [9]. 

Input a0,b0,ro, eps, imax, f 

Output k, ak,bk,rk 

for k=1:imax 

  quadrisection iteration step determines 

  ak,bk-,rk- from ak-1,bk-1,rk-1 

  relable 

ak,bk,rktoa,b,r- 

  False-position iteration step 

 input isa,b,r instead of oldak-1,bk-1,rk-1 

  false position iteration step determines 

  ak,bk,rk- from a,b,r 

This makes [ak,bk] as the common interval readily available without any computation. 

At the same time, using a,b,r instead of old ak-1,bk-1,rk-1, makes this step more optimal 

  if f(rk)<eps 

   returnk,ak,bk,rk 

  end 

endFor 

 

Summarizing the foregoing algorithms, succinctly the iteration step in the algorithms are:  

Hybrid1  

 [bak,bbk,brk]= Bisection(ak-1,bk-1,rk-1,f) 

 [pak,pbk,prk]=FalsePosition(ak-1,bk-1,rk-1,f) 

The results of hybridization step are: 

rk is better of brk, prk, 

[ak,bk] is common to [bak,bbk], [pak,pbk], 

rkbelongs to [ak,bk] 

 

Hybrid 2 

 [tak,tbk,trk]=Trisection(ak-1,bk-1,rk-1,f) 

 [pak,pbk,prk]=FalsePosition(ak-1,bk-1,rk-1,f) 

The outcomes of hybridization are: 

rk is better of trk, prk, 

[ak,bk] is common to [tak,tbk], [pak,pbk], 

rkbelongs to [ak,bk] 

 

Hybrid3  

 [tak,tbk,trk]=Trisection(ak-1,bk-1,rk-1,f) 

 [nak,nbk,nrk]=NewtonRaphson(ak-1,bk-1,rk-1,f) 

The upshot of hybridization is: 

rk as better of trk, nrk, 

[ak,bk] is common from [tak,tbk], [nak,nbk] and nrk by analyzing { f(tak), f(tbk), f(nak),f(nbk), f(nrk})}then 

finding [ak,bk] from { tak,tbk,nak,nbk, nrk}.  

rkbelongs to [ak,bk] 

 

Hybrid4 (new contribution) 

https://conceptually.org/concepts/occams-razor
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  [a,b,r]=Quadrisection(ak-1,bk-1,rk-1,f) 

  [pak,pbk,prk]=FalsePosition(a,b,r,f) 

The conclusion of hybridization is: 

The interval [ak,bk] is readily available, because [pak,pbk] is itself the desired interval [ak,bk] containing rk,  prk is  

rk, the desired root. This algorithm is optimal in the number of iterations and the accuracy of approximate root. 

There is no need to do any work for calculations. 

 

IV. DISCUSSION 
Many researchers focused their attention toward using such methods to solve their problems. The roots 

are calculated, along with the number of iterations within a specified tolerance. All the existing methods are 

compared. Error analysis is performed. It is determined that new hybrid algorithm outperforms the other 

algorithms. 

 

A. Empirical Evidence Testing 

We have tested our new algorithm side by side with other hybrid algorithms on diverse examples found 

in article in then literature to validate that new algorithm outperforms the conclusion made by them.  Tables 5-

11give a synopsis of some functions. 

 

B. Experiments in Matlab 

Some researchers used Mirosoft visual C++ to find roots, we used MatlabR2022A 64 bit (maci64) on 

MacBook Pro MacOS Sonoma 14.1.116GB Apple M1Pro .Along with several different functions, we use the 

same quadratic equation for root of x
2
-x-2 = 0. Overall we have validated that the new algorithm performs better 

than all the hybrid algorithms. These tests indicate that hybridization with false position algorithm is still 

preferable to hybridization with Newton-Raphson possibly because the NR method requires that the function be 

differentiable.  

 

Tables 5-11 are from the functions used in the literature.  In all the function in this table the upperbound on the 

number of iterations is 40 and error bound is 10
-6

. These are some benchmark test functions from recent hybrid 

algorithms. 
 

 

  

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Table 5 Function f= @(x) m*exp(x).*(x-1)- Transcendental, Interval [-2, 13]  

    Method         Iterations  Error     Root    TimeUsed 

Hybrid1: Bisection-FalsePos    10  0.0000003170838 0.999999992709 0.02568770800000   

Hybrid2: Trisection FalsePos    8  0.0000000395461 0.999999999091 0.02214395800000 

Hybrid3: Trisection-NewtonRaph  10  6.4960935953574 -2.000000000000 0.02972425000000 

Hybrid4: Quadrisection-FalsePos  6  0.0000001375199 0.999999996838 0.01611329200000 

Table 6 Function f(x) = 0.986*x.^3 -5.181* x.^2 +9.067*x-5.289 Non-Linear, Interval [0, 2]  

    Method         Iterations  Error    Root    TimeUsed 

Hybrid1: Bisection-FalsePos    7   0.0000008959635 1.929835876074 0.00868341600000   

Hybrid2: Trisection FalsePos    5   0.0000002142064 1.929843764485 0.00650604200000 

Hybrid3: Trisection-NewtonRaph  5   0.0000001094874 1.929847509586 0.01198429200000 

Hybrid4: Quadrisection-FalsePos  4   0.0000000494278 1.929845670976 0.00769437500000 

Table 7 Function x-cos(x), Interval [0, 1] -Transcendental 

    Method        Iterations   Error    Root    TimeUsed 

Hybrid1: Bisection-FalsePos    5   0.0000000059872 0.739085129638 0.02441987500000   

Hybrid2: Trisection FalsePos    4   0.0000001695627 0.739085031900 0.02608075000000 

Hybrid3: Trisection-NewtonRaph  4   0.0000002673808 0.739085292978 0.02653025000000 

Hybrid4: Quadrisection-FalsePos  2   0.0000005367912 0.739084812477 0.02592866700000 

Table 8 Function f(x) = 1./(x-3)-6, Interval [3.100000e+00, 4] -Non-linear 

    Method         Iterations   Error    Root    TimeUsed 

Hybrid1: Bisection-FalsePos    7   0.0000004800000 3.166666680000 0.00750858300000   

Hybrid2: Trisection FalsePos    3   0.0000000000000 3.166666666667 0.00563233400000 

Hybrid3: Trisection-NewtonRaph  6   0.0000001279518 3.166666663112 0.01658004200000 

Hybrid4: Quadrisection-FalsePos  3   0.0000000034154 3.166666666762 0.00622525000000 
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V. CONCLUSION 
We have designed and implemented a new algorithm, a proficient hybrid of Quadrisection and Regula 

Falsi methods. The algorithm was implemented in Matlab R2022A 64 bit (maci64) on MacBook Pro MacOS 

Sonoma 14.1.116GB Apple M1Pro. The implementation tests in Tables 5-11 indicate that it outperforms all the 

above cited algorithms all the time by a considerable margin.  The experiments on numerous datasets used in the 

literature justify that the new algorithm is effective both conceptually and computationally. Thus, this paper 

provides a fastest algorithm to the repertoire of hybrid algorithms.  

 

VI. APPENDIX 
There is no universal algorithm optimal for root approximation that works on all the functions on all the 

domain intervals. We provide a summary of classical methods here for reference. In the paper, we have 

provided a new hybrid algorithm that is based on the classical methods and outperforms both the classical and 

hybrid methods.  
There are four classical methods for finding roots of non-linear equations: Bisection, Regula Falsi, Newton-

Raphson, Secant. For completeness, we describe these methods briefly for (1) root approximation, (2) error 

calculation, and (3) termination criteria. Then we use Occam’s razor principle to select the optimal method for 

error calculation and termination criteria.  
We constrain this discussion to finding a single root instead of all the roots of an equation. In case, an 

equation has several roots, we can delineate an interval where the desired root is to be found.  
 

A. Bisection Method 

The Bisection method is (1) based on binary chopping of irrelevant subintervals, (2) virtually binary 

search, and (3) guaranteed to converge to the root. Bisection method is static, the length of the subinterval at 

each iteration is independent of the function. No matter what the function is, the root-error upper bound is fixed 

at each iteration and can be determined a priori. By specifying the root-error tolerance, the upper bound on the 

number of iterations can be predetermined quickly [10]. 

Problem: If a function f:[a, b]R (1) is continuous and (2) f(a) and f(b) are of opposite signs, i.e., f(a)•f(b) < 0, 

then there exists a root r∈ [a, b] such that f(r) = 0. 

Let [a1,b1] = [a, b] be the initial interval of continuity of f.  The first approximate root is 

  r1 = 
𝑎1+𝑏1

2
, middle point of the interval [a1,b1] 

the actual root lies in the interval [a1, r1] or [r1,b1],  

if f(r1)=0, r1 is the root. 

if f(a1) and f(r1) are of the opposite sign, f(a1)•f(r1) < 0, true root lies in [a1, r1]  

if f(r1) and f(b1) are of the opposite sign, f(r1)•f(b1) < 0, true root lies in [r1,b1], 

The new interval is denoted by [a2,b2] 

Table 10 Function f(x) = x^2 - x - 2, Interval [1, 5] - quadratic 

    Method         Iterations   Error    Root    TimeUsed 

Hybrid1: Bisection-FalsePos    5   0.0000000020955 1.999999999302 0.01563458300000   

Hybrid2: Trisection-FalsePos    5   0.0000000284792 1.999999990507 0.01726020800000 

Hybrid3: Trisection-NewtonRaph  6   0.0000009078811 2.000000302627 0.04992987500000 

Hybrid4: Quadrisection-FalsePos  1   0.0000000000000 2.000000000000 0.00655712500000 

Table 11 Function f(x) = x^2 - x - 2, Interval [1, 6]  - quadratic 

    Method         Iterations  Error     Root    TimeUsed 

Hybrid1: Bisection-FalsePos    6   0.0000000658628 1.999999978046 0.00301462500000   

Hybrid2: Trisection FalsePos    2   0.0000000000000 2.000000000000 0.00264712500000 

Hybrid3: Trisection-NewtonRaph  6   0.0000006365309 2.000000212177 0.00593533300000 

Hybrid4: Quadrisection-FalsePos  2   0.0000000113519 1.999999996216 0.00254025000000 

Table 9 Function f(x) = x^2  - 2 - Non-Linear, Interval [1, 3]  - quadratic 

    Method         Iterations   Error     Root    TimeUsed 

Hybrid1: Bisection-FalsePos    6   0.0000000217511 1.414213554683 0.00548650000000   

Hybrid2: Trisection FalsePos    5   0.0000000496455 1.414213544821 0.00401850000000 

Hybrid3: Trisection-NewtonRaph  6   0.0000002000287 1.414213633094 0.01707441700000 

Hybrid4: Quadrisection-FalsePos  3   0.0000001440045 1.414213511460 0.00423837500000 
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At each iteration, new root and next sub-interval is generated. 

In general, for each iteration k, the approximation   

rk=
𝑎𝑘 +𝑏𝑘

2
 is middle point of [ak, bk],  

Either rk is the root or  

if f(ak)•f(rk) < 0, the root lies in [ak, rk] 

else if f(rk)•f(bk) < 0, the root lies in [rk, bk]   

 

Then the new interval is denoted by [ak+1,bk+1] with rk  as one of its end points 

 

A.1 Advantages of Bisection Method 

Since the method brackets the root, at each iteration the length of root-bracketing interval is scaled to half 

the length. Thus, the method guarantees the decrease in the error in the approximate root at each iteration. The 

convergence of Bisection method is certain as it is simply based on halving the bracketing interval containing 

the root. 

 

A.2 Drawbacks of Bisection Method 

Though the convergence of Bisection method is guaranteed, its rate of convergence is too slow and as 

such it is quite difficult to extend to use for systems of equations. If one of the initial endpoints is closer to the 

root, Bisection method does not take advantage of this information,  it will take larger number of iterations to 

reach the root [10]. 

 

B. False Position (Regula Falsi) Method[11], [12] 

Motivation for innovative methods arises from the poor performance of Bisection method. The False 

Position method is known by various names: Double False Position, Regula Falsi method, linear interpolation 

method. It is a very original method for solving equations in one unknown. This method differs from Bisection 

method in the way the estimates are calculated. False Position method is a dynamic method, it takes advantage 

of the location of the root to make a conceivably better appropriate selection. Unfortunately, this method is not 

satisfactory as expected, for all functions, see Figure 2,3,4,5.   

Here also the function f:[a, b]R (1) is continuous and (2) f(a) and f(b) are of opposite signs, i.e., 

f(a)•f(b)<0. The algorithm uses a, b as the two initial estimates a1, b1 for the root.  The False Position method 

uses two start values ro = a1, r1 =b1, to compute successive values 

rn = rn-1  -
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 for natural number n ≥2 

the approximations,  rn , are ensured to be bracketed in [an, , bn] depending on f(an-1)•f(rn)<0 for [an-1,rn] and 

[rn, bn-1] depending on as in the case of Bisection method,  

 

B.1 Justification: Error in Bisection method is straight forward; in each iteration root approximation error is 

halved, i.e. root approximation error in the nth step is no larger than 
𝑏−𝑎

2𝑛  . This is not the case for False Position 

method. If a is sufficiently close to the root r, then f(a) is close to f(r) = 0  due to continuity of f.  The slope of 

the secant line slope,
𝑓 𝑏 −𝑓(𝑎)

𝑏−𝑎
 , is approximately equal to 

𝑓 𝑏 

𝑏−𝑟
.  The closer b is to r, the closer the secant line is to 

tangent, f’(r). Though, it is not required that f be differentiable.  The closer b is to r, faster the convergence of 

iterations [12].  

 

B.2 Advantages of False Position Method 

It is guaranteed to converge due to decreasing length of root-bracketing interval. It is fast when you know 

the linear nature of the function.  

 

B.3 Drawbacks of False Position Method 

For False Position method, there is no way to tell the number of iterations needed for convergence. The 

False Position method is expected to be faster than Bisection method. If we cannot ensure that the function 

can be interpolated by a linear function, then applying the False Position method can result  in worse results 

than the Bisection method. The problem occurs when the function is convex, concave up or concave down 

According to [10], for concave down function, left end point remains stationary and right end point updates in 

each iteration. For concave up function, right end point remains stationary and left end point updates in each 

iteration. This is not an accurate statement, it works some of the functions, not all the functions. Figures 2, 3, 4, 

5 contradict this statement. It depends on the convexity of the function, not concavity up or down. When the 
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root is very close to the end points of the interval, convergence can become extremely slow. Visuals are helpful 

insight to comprehend the behavior of algorithms. 

In these examples, four functions are used with same tolerance and the upper limit of 10 iterations for 

display purposes. The purpose is to show how the algorithms work for False Position method. In the interest of 

simplicity of plots, we terminated the algorithms before reaching the error-tolerance. 

 

 
Figure 2. Convex Function Concave up, right end point fixed 

 

 
Figure 3. Convex Function Concave up, right end point fixed 

 

 
Figure 4. Convex Function Concave down, right end point fixed 
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Figure 5. Convex Function Concave down, left end point fixed 

 

C. Newton-Raphson Method [3] 

Newton-Raphson method is also called a fixed point iteration method. This method requires that the 

function be differentiable. If the function f(x) is differentiable on the domain of the function, and r0 is initial 

guess, then the first approximation r1 is defined by 

 r1 = r0 - f(r0)/f’(r0) 

and successive approximations are  

rn = rn-1 - f(rn-1)/f’(rn-1) for natural numbers n ≥ 2. 

This method converges provided |x - f(x)/f’(x)| < 1 for x in the domain of definition. For functions where 

there is a singularity and it reverses sign at the singularity, Newton-Raphson method may converge on the 

singularity. 

 

C.1 Advantages of the Newton-Raphson method 

The convergence rate is linear and this method is very fast as compared to Bisection and False Position 

methods. If we know the multiplicity, m, of the root, it  can be further improved with faster convergence to the 

root [3]. The updated iteration formula becomes, 

rn = rn-1 – m f(rn-1)/f’(rn-1) for natural numbers n ≥ 1. 

Note. If f
(k)

(x) = 0, for all integers k < m, then multiplicity of root is m. 

 

C.2 Disadvantages of the Newton-Raphson method; 

The only pitfall is that it fails if the derivative, f’(x), is near zero at some iteration. For example, Newton-

Raphson method fails to compute r1 for f(x) = x
2
 -1 where r0 = 0. But it does not create a problem in some cases 

where singularity in f’(x) cancel with f(x). for example, f(x) = x
3
 with r0 = 0 does result in r1 = 0. 

 

D. Secant Method, Modified Secant Method[13] 

The Secant method also requires that the function be differentiable. When it is not easy to compute the 

derivative of the function, the Secant method approximates the derivative with the slope of a secant line. That is, 

in the absence of derivative of the function, Secant method is a modification of the Newton-Raphson method. In 

fact, it does not need differentiability as well as bracketing. It is similar to False Position method. The only 

difference is that False Position method ensures that approximations are bracketed and Secant method simply 

uses the last two values to approximate the tangent. Thus, the Secant method is not guaranteed to converge. 

The convergence rate of the Secant method is superlinear.  Thus, the convergence rate is between that of 

the Bisection method and the Newton-Raphson’s method. The Secant method requires two initial values, 

whereas Newton-Raphson method required only one start values. If the function f(x) is differentiable, r1 can be 

computed from r0. Now r0, r1 are two is initial guesses, then the approximations of the secant method can be 

written as   

rn = rn-1 -
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 for natural numbers n ≥ 2 

 

For still better estimate of the slope of the Secant line, we can define a small constant delta, 𝛿, so 

that it can uniformly replace rn-2with  rn--1 - 𝛿 as  

rn = rn-1  -  
𝑓(𝑟𝑛−1)(𝑟𝑛−1−𝑟𝑛−2)

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−2)
 = rn-1  -  

𝑓 𝑟𝑛−1 𝛿

𝑓(𝑟𝑛−1)−𝑓(𝑟𝑛−1−𝛿)
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The success of this method is questionable if 𝛿 is not chosen sufficiently small. One way will be set 𝛿< |rn-2-rn--1| 

 

D.1 Advantages and Shortcomings 

It has the advantage for finding a bracketing-interval quickly where the root lies, but choice of delta 

must be made adaptively, else the algorithm runs the risk of missing the root.  

Some researchers, experimented on f(x) = x - cos(x) on a close interval [0,1] and concluded that secant 

method is better than Bisection and Newton-Raphson method [14], [15]. It is not accurate to make a general 

conclusion statement from one function.  
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