

Structural Analysis and Design of University of Eldoret School of Medicine

Terry Wambui Githua¹, Juanita Wambui Gichimu¹, Sheila Kerubo Kodheks¹, Benson Kamau Ndungu¹, Clement Kiprotich Kiptum¹, Nancy Tanui¹

¹Department of Civil & Structural Engineering, University of Eldoret, 1125-30100, Eldoret, Kenya

Abstract: Health care providence is a critical aspect in any community or country worldwide. In most countries, the health docket is assigned a ministry on its own that is accountable for ensuring proper healthcare is provided, challenges are solved and money is allocated to finance healthcare providence in purchasing of drugs and paying the health practitioners. The basic foundation of proper healthcare providence is through the employment of competent healthcare workers that fully understand what is expected of them in their respective areas of expertise. Competent health practitioners are birthed at school during training. A conducive environment with proper training and resources is therefore a step in the right direction in providing competent health workers. At the fore front of health practitioners are the doctors. Their role is providence of essential medical care, prescription of medication, performance of surgeries and offering preventive measures in maintenance of health. The doctors therefore play a vital role in enhancing the healthcare sector and subsequently, their training is crucial in gearing the health docket in the right direction. With the projected increase in population, there will be need for more doctors and concurrently construction of more training institutions for the doctors. This study involved the design of a medical school which would support the education of doctors and production of detailed drawings and specifications of the facility according to accepted codes and standards. The school will be helpful in alleviating the doctor to patient ratio and decreasing the pressure imposed on the few available school of medicine in Kenya which currently admitmore students than their capacity.

Keywords: School of medicine, Structural analysis and Design, Eurocodes standards, ProtaStructure, TeklaTedds

1. Introduction

The first school of medicine established that worked towards training of medical practice was achieved by a man called Hippocrates of Kos around 400 BCE. He is called the father of divination to date as he did studies of each of his patients teaching illnesses were caused by problems in the human body and not by demons and witchcraft as people had believed. The Hippocratic School of medicine used the ancient Greek medicine and established it as a field on its own separating it from the fields of theurgy and philosophy and therefore establishing medicine as a profession[1].

Pre colonization, Africa practiced traditional medicine. The system was based on three levels of specialty: divination, spiritualism and herbalism. Illnesses were believed to have both natural and supernatural causes hence both physical and spiritual methods were used to cure illnesses. The system lacked advanced machinery and research needed to cure complex bacterial and viral illnesses and as a result, the mortality rate was high for diseases that are now proven curable. The first school of medicine established in Africa was University of Cape Town incepted in the year 1920 by a professor known as Professor A W Falconer from Scotland[2]. This was the inception of the first actual research and medical training institution in Africa that incorporated complex technology in health care providence. It was not until 1965-1967 that Kenya had its own school of medicine, The University of Nairobi school of medicine, established by Dr NjorogeMungai, the then Minister of Health[3].

Currently, Kenya has a total of twelve schools of medicine from both private and public universities with only one of them, Moi University Medical School, being in UasinGishuCounty[4]. University of Eldoret was upgraded from Chepkoilel University College, a constituent of Moi University in 2013 and given its own chatter by the then president MwaiKibaki. The University has currently been able to establish nine schools with approximately thirty four departments and a total student population of 14,000[5]. It has plans of establishing its own college of health sciences with several schools, one of them being the school of medicine.

According to [6], Kenya currently has a doctor to patient ratio of 1:17000 which is far from the recommended ratio of 1:1000 as per the World Health Organization. The shortage of the doctors has resulted in the long working hours for the doctors without leaves which eventually makes them unable to attend to the patients appropriately. The solution to the problem is by increasing the number of doctors which can be done by

increasing the number of graduate doctors each year. The available universities offering the course have a specific capacity for intakes each year. Increasing the intakes beyond this capacity would be detrimental for appropriate learning hence necessitating the construction of more schools. This design and its subsequentconstruction will therefore eventually narrow the doctor to patient ratio gap being experienced in Kenya

Figure 1: Master plan of the UOE with several schools yet to be constructed amongst them School of medicine

Figure 2: Google map image of the proposed location of the school

2. Methodology

I. Preliminary research and planning

Visits were conducted to two school of medicine:

- a. **Kisii medical school-** It is located in Kisii County, Kenya. The facilities in the school are Lecture rooms, multi-purpose hall, offices, Bio- Chemistry lab, pathology lab, anatomy lab, microbiology lab, skills/demo lab, kitchen and toilets
- b. **Moi University medical school-**It is located in UasinGishu County, Kenya. The facilities are Lecture rooms, histopathology lab, bio-chemistry lab, pathology lab, anatomy lab, microbiology lab, skills/ demo lab and a well-established cancer center.

Online research was also conducted on two international medical schools:

- a. **Queen's university school of medicine-** It is located in Ontario Canada. The facilities in the school are Leading edge classrooms, surgical and technical skills laband simulation labs, Informal learning spaces, Student study space, a state of the art clinical center and dedicated rooms for small group learning.[7]
- b. **UMass Chan medical school-** It is located in Worcester, Massachusetts, United States of America. The facilities in the school are Faculty conference room located on the first floor, three amphitheaters located

in the third, fifth and seventh floor, Goff learning center that contains a number of meeting and classrooms that has advanced audio-visual capability located on the first and second floor. [8]

II. Architectural Design

It was done using the ArchiCADsoftware. A three-storey building with a flat roof that have solar panels was designed. The building's dimension was 30m by 27.2m. The ground floor contained the pathology lab, skills lab, anatomy lab, microbiology lab, bio-chemistry lab as well as both ladies' and gent's washrooms. The first and second floor contained three lecture halls, one study room, eight offices each with washrooms and a common staffroom. The third floor contained a multi-purpose hall, Dean's office with a washroom, the administrator's office with a washroom, one store room and ladies' and gent's washroom.

Figure 3: ArchiCAD architectural design of the school

III. Structural Layout

The layout was proposed and drafted using AutoCAD software showing the position of beams, columns and slab panels. The columns were placed aligned to the walls to avoid visibility and maneuverability problems within the rooms.

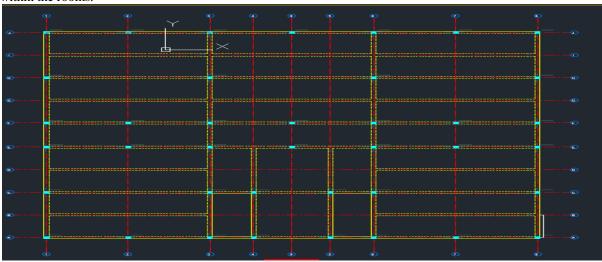


Figure 4: Structural layout drafted using AutoCAD

IV. Structural Design

Eurocodes standards were employed when designing the school. Prota Structure, TeklaTedds and hand calculations were used for the structural analysis and design of the structural concrete members.

a. Prota Structure- a model was designed from the structural layout drafted in AutoCAD for all the three floors. The following design parameters were used; wall thickness of 0.3m, wall height of 2.4m, wall unit weight of 3.71 KN/m², dead load 8.71KN/m, f_{vk} 500N/mm² and f_{ck} 25N/mm².

- **b. TeklaTedds-** critical structural members were designed and included a critical slab of 10m by 3.2m, a three span continuous critical beam of 10m per span, a critical column of 0.3m by 0.4m and a critical column base supporting loads from the critical column with an assumed bearing pressure of 215 KN/m²
- **c.** Hand Calculations- critical structural members were designed.

3. Results and Discussion

Below is the critical beam as extracted from the ProtaStructure Software. The beam designed was a three span continuous beam whose dimension was 0.3*0.75m and spanning with 10m each span. The links provided were H8@200 center to center with a yield strength of 500N/mm². The reinforcement bars provided were 3H16, 3H20, 3H25 and 1H32 as shown in the figure with a yield strength of 500N/mm²

Bending							T		
B _w / H (mm)	1B29	L= 300 / 750	10000mm	1B30	L= 300 / 750	10000mm	1B31	L= 300 / 750	10000mm
Flange B _f / H _f		0007700			0007700			0007700	
(Left)				•					
(Right) Top Edge									
M (kN.m)	89.2	0.0	390.4	390.0	66.0	389.6	390.0	0.0	89.2
d (mm) K/K'	709.0 0.08	709.0 0.00	701.0 0.37	701.0 0.37	709.0 0.06	701.0 0.37	701.0 0.37	709.0 0.00	709.0 0.08
x (mm)	88.6	88.6	126.1		88.6	125.8		88.6	88.6
A _{sm} (mm ²) A _{sv} (mm ²)	125.9 429.35	88.6 403.41	88.6 635.55	125.9 523.78	88.6 291.64	88.6 523.68	125.9 635.44	88.6 403.30	88.6 429.57
A _s (mm ²)	304.48	403.41	1380.02	1378.69	517.16	1377.23	1378.56	403.30	304.75
A _s ' (mm²) A _{s,min} (mm²)	0.00 355.03	0.00 355.03	0.00 351.03	0.00 351.03	0.00 355.03	0.00 351.03	0.00 351.03	0.00 355.03	0.00 355.03
Bottom Edge	244.2	250.7	0.0		100.1	0.0		257.0	244.0
M (kN.m) d (mm)	214.2 692.0	356.7 704.5	0.3 692.0	692.0	183.1 707.0	0.0 692.0	692.0	357.0 704.5	214.3 692.0
K/K' × (mm)	0.21 86.5	0.33 113.7	0.00 86.5	0.00 86.5	0.17 88.4	0.00 86.5		0.33 113.8	0.21 86.5
A _{sm} (mm ²)	86.5	113.8	86.5	86.5	113.8	86.5	86.5	113.8	86.5
A _{sv} (mm ²) A _s (mm ²)	429.35 1178.89	403.41 1244.78	635.55 636.43		291.64 626.98	523.68 523.68		403.30 1245.96	429.57 1179.40
A_n' (mm ²)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
A _{s,min} (mm²)	346.52	352.78	346.52	346.52	354.03	346.52	346.52	352.78	346.52
Shear And	Torsion De	sign							
Va (kN)	149.3		221.0	182.2		182.1	221.0		149.4
v (MPa) v _{Rdo} (MPa)	0.70 0.53		1.05 0.53	0.52		0.87 0.53	0.53		0.70 0.53
VRd (kN)	5.42		5.42 340.3	5.42		5.42 340.3	5.42		5.42 340.3
V _{nom} (kN)		356.5	340.3		356.5	340.3	1	356.5	340.3
T _d (kN.m) T _{Min} (kN.m)		0.0 13.0	≤T _{Min}		0.0 13.0	≤TMin		0.0 13.0	≤T _{Min}
I Min (KIN.III)	0.0		0.0	0.0		0.0	0.0		0.0
b _{support} (mm)		1H8-200	1H8-200	1H8-200	1H8-200	1H8-200	1H8-200	1H8-200	1H8-200
b _{support} (mm) Links	1H8-200	1110-200							
Links	1H8-200	1H8-200							
Deflection (1H8-200 Check	1H8-200		14 14 <			14 19 <		
Links	1H8-200	TH8-200		14.14 ≤ 75.17 ✓			14.19 ≤ 21.41 ∨		
Deflection (1H8-200 Check 14.19 ≤ 21.44 ✓	1H8-200							
Deflection (1H8-200 Check 14.19 ≤ 21.44 ✓	1118-200							
Deflection (1H8-200 Check 14.19 ≤ 21.44 ✓	1118-200							
Deflection (1H8-200 Check 14.19 ≤ 21.44 ✓	1118-200					21.41 ✓		
Deflection (1H8-200 Check 14.19 ≤ 21.44 ✓	1116-200			LE9JR7VCZZ	IZJJCH (Fene		Use COMMER	RCIAL)
Deflection (L/d Steel Areas Required	1H8-200 Check 14.19 ≤ 21.44 √ (mm²)	1116-200				IZJJCH (Fene	21.41 ✓	Use COMMER	RCIAL)
Deflection (1H8-200 Check 14.19 ≤ 21.44 √ (mm²)	1110-200			LE9JR7VCZZ Calc. By:	IZJJCH (Fene	21.41 ✓	Use COMMER	RCIAL)
Deflection (L/d Steel Areas Required	1H8-200 Check 14.19 ≤ 21.44 √ (mm²)	1116-200			Calc. By:	IZJJCH (Fene	21.41 ✓	Use COMMER	RCIAL)
Deflection (L/d Steel Areas Required Beam Reinforc	1H8-200 Check 14.19 ≤ 21.44 √ (mm²)	1110-200				IZJJCH (Fene	21.41 ✓	Use COMMER	RCIAL)
Deflection (L/d Steel Areas Required Beam Reinforc	1H8-200 Check 14.19 ≤ 21.44 √ (mm²)	1110-200			Calc. By:	IZJJCH (Fene	21.41 ✓	Use COMMER	RCIAL)
Deflection (L/d Steel Areas Required Beam Reinforc Rev. 1	1H8-200 Check 14.19 ≤ 21.44 ✓ (mm²) ement Design		1200.00	75.17 V	Calc. By: Checked By:	,	rbahce_Do Not		·
Deflection (L/d Steel Areas Required Beam Reinforc Rev. 1	1H8-200 Check 14.19 ≤ 21.44 ✓ (mm²) ement Design	403.41	1380.02	1378.69	Calc. By: Checked By:	1377.23	rbahce_Do Not	403.30	304.75
Deflection (L/d Steel Areas Required Beam Reinforc Rev. 1	1H8-200 Check 14.19 ≤ 21.44 ✓ (mm²) ement Design	403.41		1378.69	Calc. By: Checked By:	1377.23	rbahce_Do Not	403.30	304.75
Deflection (L/d Steel Areas Required Beam Reinforc Rev: 1 Top Edge Bottom Edge	1H8-200 Check 14.19 ≤ 21.44 ✓ (mm²) ement Design		1380.02 636.43	75.17 V	Calc. By: Checked By:	,	rbahce_Do Not		·
Deflection (L/d Steel Areas Required Beam Reinforc Rev. 1	1H8-200 Check 14.19 ≤ 21.44 ✓ (mm²) ement Design	403.41		1378.69	Calc. By: Checked By: 517.16	1377.23	rbahce_Do Not	403.30	304.75
Beam Reinforc Rev: 1 Top Edge Bottom Edge Supplied	1H8-200 Check 14-19 = 21-44 \(\text{(mm²)} \) ement Design 304.48 1178.89	403.41 1244.78	636.43	1378.69 523.78	Calc. By: Checked By: 517.16 626.98	1377.23 523.68	rbahce_Do Not	403.30 1245.96	304.75 1179.40
Beam Reinforc Rev: 1 Top Edge Bottom Edge Supplied Top Edge Top Edge	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19	636.43 1407.43	1378.69 523.78	Calc. By: Checked By: 517.16 626.98 603.19	1377.23 523.68	1378.56 636.39	403.30 1245.96 603.19	304.75 1179.40 603.19
Beam Reinforc Rev: 1 Top Edge Bottom Edge Supplied	1H8-200 Check 14-19 = 21-44 \(\text{(mm²)} \) ement Design 304.48 1178.89	403.41 1244.78	636.43	1378.69 523.78	Calc. By: Checked By: 517.16 626.98	1377.23 523.68	rbahce_Do Not	403.30 1245.96	304.75 1179.40
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Bottom Edge	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19	636.43 1407.43	1378.69 523.78	Calc. By: Checked By: 517.16 626.98 603.19	1377.23 523.68	1378.56 636.39	403.30 1245.96 603.19	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62	636.43 1407.43	1378.69 523.78	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68	1378.56 636.39	403.30 1245.96 603.19 1472.62	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62	636.43 1407.43	1378.69 523.78	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68	1378.56 636.39	403.30 1245.96 603.19 1472.62	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19	636.43 1407.43	1378.69 523.78	Calc. By: Checked By: 517.16 626.98 603.19	1377.23 523.68	1378.56 636.39	403.30 1245.96 603.19	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars Top Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62	636.43 1407.43 1472.62	1378.69 523.78 1407.43 942.48	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68 1407.43 942.48	1378.56 636.39 1407.43 1472.62	403.30 1245.96 603.19 1472.62	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars Top Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62	636.43 1407.43 1472.62	1378.69 523.78 1407.43 942.48	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68 1407.43 942.48	1378.56 636.39 1407.43 1472.62	403.30 1245.96 603.19 1472.62	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars Top Bars Top Sup.Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62 3H16	636.43 1407.43	1378.69 523.78	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68	1378.56 636.39	403.30 1245.96 603.19 1472.62 3H16	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars Top Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62	636.43 1407.43 1472.62	1378.69 523.78 1407.43 942.48	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68 1407.43 942.48	1378.56 636.39 1407.43 1472.62	403.30 1245.96 603.19 1472.62	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars Top Bars Top Sup.Bars Bottom Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62 3H16	636.43 1407.43 1472.62	1378.69 523.78 1407.43 942.48	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68 1407.43 942.48	1378.56 636.39 1407.43 1472.62	403.30 1245.96 603.19 1472.62 3H16	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars Top Bars Top Sup.Bars Bottom Bars Bottom Bars Bottom Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62 3H16	636.43 1407.43 1472.62	1378.69 523.78 1407.43 942.48	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68 1407.43 942.48	1378.56 636.39 1407.43 1472.62	403.30 1245.96 603.19 1472.62 3H16	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars Top Bars Top Sup.Bars Bottom Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62 3H16	636.43 1407.43 1472.62	1378.69 523.78 1407.43 942.48	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68 1407.43 942.48	1378.56 636.39 1407.43 1472.62	403.30 1245.96 603.19 1472.62 3H16	304.75 1179.40 603.19
Beam Reinforc Rev. 1 Top Edge Bottom Edge Supplied Top Edge Bottom Edge Steel Bars Hanger Bars Top Bars Top Sup.Bars Bottom Bars Bottom Bars Bottom Bars	1H8-200 Check 14-19 = 21-44 \(\text{Imm2} \) ement Design 304.48 1178.89 603.19	403.41 1244.78 603.19 1472.62 3H16	636.43 1407.43 1472.62	1378.69 523.78 1407.43 942.48	Calc. By: Checked By: 517.16 626.98 603.19 942.48	1377.23 523.68 1407.43 942.48	1378.56 636.39 1407.43 1472.62	403.30 1245.96 603.19 1472.62 3H16	304.75 1179.40 603.19

Figure 5: Critical beam from ProtaStructure

Below is the critical slab designed using TeklaTedds software. The slab was a 150mm slab whose dimension was 10m by 3.2m. The steel reinforcement provided was H10@175 center to center with a yield strength of $500N/mm^2$.

International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031

www.ijlret.com || Volume 10 - Issue 05 || May 2024 || PP. 01-09

J						~ • • • •
Tekla Tedds	Project				Job Ref.	
	Section				Sheet no./rev. 1	
	Calc. by H	Date 5/1/2024	Chk'd by	Date	App'd by	Date

RC SLAB DESIGN

<u>GN</u> with EN1992-1-1:2004 incorporating corrigendum January 2008 and the UK national annex Tedds calculation version 1.0.22

Description	Unit	Provided	Required	Utilisation	Result
Support 1	•	•		•	
Span 1					
Tension reinf.	mm²/m	449	317	0.705	PASS
Tension bar spacing	mm	175	193	0.905	PASS
Allow, span-to-depth ratio		26.67	37.15	0.718	PASS
Support 2					
Cover					
Min cover bottom	mm	25	20	0.800	PASS

Slab definition
Slab reference name
Overall slab depth
Number of spans
First support
Last support CRITICAL ONE WAY SLAB
h = 150 mm
N_{spans} = 1
Simple
Simple Nominal cover to bottom reinforcement Cnem b = 25 mm Loading Ratio of quasi-permanent to ultimate load rq = **0.800** Concrete properties
Concrete strength class
Characteristic cylinder strength
Partial factor (Table 2.1N)
Compressive strength factor (cl. 3.1.6)
Design compressive strength (cl. 3.1.6)
Mean axial tensile strength (Table 3.1)
Maximum aggregate size
Reinforcement properties C25/30 $f_{ck} = 25 \text{ N/mm}^2 \\ vn = 1.50 \\ ot_{cc} = 0.85 \\ f_{cd} = 14.2 \text{ N/mm}^2 \\ f_{cm} = 0.30 \text{ N/mm}^2 \times (f_{ck} / 1 \text{ N/mm}^2)^{2/3} = 2.6 \text{ N/mm}^2 \\ d_g = 20 \text{ mm}$

Reinforcement properties Characteristic yield strength Partial factor (Table 2.1N) f_{yk} = 500 N/mm² Design yield strength (fig. 3.8) $f_{yd} = f_{yk} / \gamma_S = 434.8 \text{ N/mm}^2$

Concrete cover to reinforcement
Nominal cover to bottom reinforcement
Fire resistance period to bottom of slab
Axis distance to bottom reinft (Table 5.8) c_{nom_b} = 25 mm R_{btm} = 60 min a_{fi_b} = 20 mm

Tekla . Tedds	Project				Job Ref.	
	Section				Sheet no./rev. 2	
	Calc. by H	Date 5/1/2024	Chk'd by	Date	App'd by	Date

 $c_{min,b_{-}b} = \phi_{max_{-}b} = 10 \text{ mm}$ Not subject to QA system

Min. required nominal cover to bottom reinft $c_{\text{nom_b_min}} = \text{max}(a_{6_b} - \phi_{\text{max_b}} / 2, c_{\text{min,b_b}} + \Delta c_{\text{dev}}) = 20.0 \text{ mm}$ PASS - There is sufficient cover to the bottom reinforcementBending design checks Redistribution ratio Limiting value of K $\bar{s} = 1.0$ K' = 0.598 × \bar{s} - 0.18 × \bar{s}^2 - 0.21 = **0.208**

Min. btm cover requirement with regard to bond Reinforcement fabrication

Max bar diameter in bottom

Shear force

Cover allowance for deviation

A_{sp1} = **449** mm²/m Area provided Effective depth to tension reinforcement K factor

 $z = min(0.95 \times d_{p1}, d_{p1} / 2 \times (1 + \sqrt{(1 - 3.53 \times K))})$

z = 114.0 mmArea of reinforcement required for bending

 $A_{\rm sp1_m} = M_{\rm p1} / (f_{yd} \times z) = 317 \ mm^2/m$ $A_{\rm sp1_min} = \max(0.26 \times (f_{\rm ctm}/f_{yk}), 0.0013) \times b \times d_{\rm p1} = 160 \ mm^2/m$ Minimum area required

Area of reinforcement required

 $A_{sp1_req} = max(A_{sp1_m}, A_{sp1_min}) = 317 \, mm^2/m$ PASS - Area of tension reinforcement provided is adequate (0.705)

Check reinforcement spacing Reinforcement service stress

 $\sigma_s = (f_{yk} \ / \ \gamma_S) \times min((A_{sp1_m}/A_{sp1}), \ 1.0) \times r_q = \ \textbf{245.3} \ \ N/mm^2$ $s_{max_p1} = \textbf{193} \ mm$

Maximum allowable spacing (Table 7.3N) Actual bar spacing $s_{max_p1} = 193 \text{ n}$ $s_{p1} = 175 \text{ mm}$ PASS - The reinforcement spacing is acceptable

<u>Shear design checks</u> Shear resistance constant (cl. 6.2.2)

 $C_{Rd,c} = 0.18 \text{ N/mm}^2 / \gamma_C = 0.12 \text{ N/mm}^2$

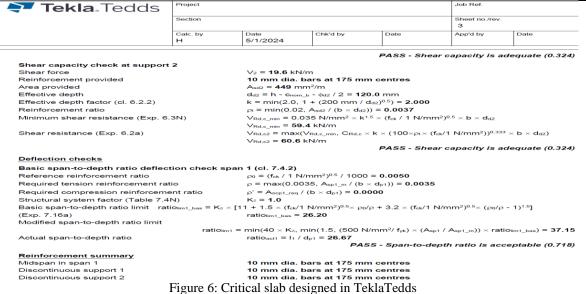
Shear capacity check at support 1

10 mm dia. bars at 175 mm centres A_{sd1} = 449 mm²/m Area provided

Effective depth Effective depth factor (cl. 6.2.2)

Reinforcement ratio

$$\begin{split} A_{ad1} &= 449 \text{ mm}^2/\text{m} \\ d_{d1} &= h - \text{ fonon}_b - \phi_{d1} \ / \ 2 = 120.0 \text{ mm} \\ k &= \text{min}(2.0, \ 1 + (200 \text{ mm} \ / \ d_{d1})^{0.5}) = 2.000 \\ \rho_1 &= \text{min}(0.02, \ A_{ad1} \ / \ (b \times d_{d1})) = 0.0037 \\ V_{Rd_c,min} &= 0.035 \ N/mm^2 \times k^{1.5} \times (f_{ck} \ / \ 1 \ N/mm^2)^{0.5} \times b \times d_{d1} \\ V_{Rd_c,min} &= 59.4 \ kN/m \end{split}$$
Minimum shear resistance (Exp. 6.3N)


$$\begin{split} V_{Rd,c1} &= max(V_{Rd,c_{min}}, \ C_{Rd,c} \times k \times (100 \times \rho_I \times (f_{ck}/1 \ N/mm^2))^{0.333} \times b \times d_{d1}) \\ V_{Rd,c1} &= \textbf{60.6} \ kN/m \end{split}$$
Shear resistance (Exp. 6.2a)

 $V_1 = 19.6 \text{ kN/m}$

International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031

www.ijlret.com || Volume 10 - Issue 05 || May 2024 || PP. 01-09

Structural analysis and design through hand calculations are as shown below. The steel reinforcement provided was 4H20 with a yield strength of 500N/mm². The design specifications used for example permanent and variable actions, cover specifications were as extracted from [9].

References		Remarks
EC2-1-	CTITICAL COLUMN CALCULATIONS USING EC2	
1:2004 E	1. SPECIFICATIONS	I
	Characteristic strength of concrete, $f_{ck} = 30 \text{ N/mm}^2$	l
	X-stic strength of reinforcement, $f_v = 500 \text{ N/mm}^2$	l
I	The column is axially loaded	l
Table 4.1	Exposure conditions: XC1	l
Table 4.3N	Strength class : C30/37	l
Table 4.4N	For structural class, S4: XC 1, Cmin ,dur =15 mm	l
CI 4.4.1.2	Cmin = Max { Cmin,b; Cmin, dur; 10mm}	
l	Assume diameter of main steel = 20mm	
Table 4.2	Therefore Cmin,b = 20 mm	l
ı	Nominal cover to all reinforcement	l
CI 4.4.1.1	Cnom = Cmin + C dev	l
CI 4.4.1.3	Cdev = 10mm	I
ı	Cmin =max { 20mm; 15mm; 10mm}= 20mm	l
	Cnom = 20mm + 10mm =30mm	Cnom= 30 mm
Table 2.1	1.12. Initial Proportioning 1.1.2. Floor Slab (150 mm thick) Permanent Action • Selfwhight = (150/1000)m + 25kN/m³ • Finishes = 3.75 kN/m² • Finishes = 2.0 kN/m² Variable Action Imposed Load = 3 kN/m² Ultimate Action Permanent and Variable action combination = 1.35gk + 1.5 gk = 1.35(5.75) + 1.5(3) = 12.26 kN/m² Area of slab acting on CLO1; A = 5 * 3 Total roof load = 12.26 * 15 Total roof load = 12.26 * 15 183.9 kN	

International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031

www.ijlret.com || Volume 10 - Issue 05 || May 2024 || PP. 01-09

	11.2. Column Self Wei		and the second s	300 × 300				f)	
			mension :						
	G.	- 0.3m*0.3m*	2.4m*25k	E^m\/N>					
		- 5.4	I KN						
	Fa-	1.35(5.4)							
		7.29	KN						
	1.3. Beam Self Weigh	t (750 × 300))						
	G, -	(750-150)/10	000 * (300	/1000) * (5 + 3) + 2	2.55			
		- 36	KN						
	Fa-	1.35(36)							
		48.6	KN						
	1.4. Wall Loads (300	mm wall)							
	G	0.3*2.4*8*1	B						
		103.68	KN						
	Fa-	= 1.35(103.68)							
		139.97	KN						
	1.5. Total Loading								
		Slab Load	Colswt	Beam swt	Walling	otal (kN)			
	Roof - 3 rd Floor	183.9	7.29	48.6	0	239.8			
	3 rd - 2 nd Floor	183.9	7.29	48.6	139.97	619.6			
			7.29	48.6	139.97	0000			
	2 nd - 1 st Floor	183.9				29 29 29 . 25			
.5.2	1" - Ground Floor Cross Section :use equal to the section of the section in the	uation below	to size t	48.6 he colum	139.97		2	IEd = 137	9.07
.5.2	1" - Ground Floor Cross Section :use eq nu = 1 + u Percentage of longitu As, should generally I greater o Assuming that the pe Asc = 0.02 Substituting Ned into (1.379*10*6)/Ac(0.85*3: 3117.65/Ac=1.85/Ac=1.85	uation below $0 = 1 + Asfya/P$ addinal reinfor- lie within the f O 10 Nea/ f precentage of r Ac the above eq $0/2.5) = 1 + ((0.0)$	7.29 / to size to siz	48.6 the column g limits 0.002Ac ment is e	139.97 n: < As < C qual to,	0.04Ac say, 2 pe			9.07
.5.2	1" - Ground Floor Cross Section :use equivalent in the percentage of longitu. As, should generally in greater of the percentage of longitude in the percentage of the percent	183.9 yuation below 0 = 1 + Asfyd/2 udinal reinfor- lie within the f 0 10New forcentage of r Ac the above eq 0/2.5)=1+(f0.0)	7.29 / to size to section of the se	48.6 the column g limits 0.002Ac ment is e	139.97	0.04Ac say, 2 pe			
.5.2	1" - Ground Floor Cross Section :use eq nu = 1 + u Percentage of longitu As, should generally I greater o Assuming that the pe Asc = 0.02 Substituting Ned into (1.379*10*6)/Ac(0.85*3: 3117.65/Ac=1.85/Ac=1.85	183.9 puation below p = 1 + Asfva/P admal reinfor- lie within the f O 10 Nea/ f forcentage of r Ac the above eq 0/1.5)=1+ ((0.0 53720.3 b = h = V5372	7.29 7 to size to see the see se	48.6 the column g limits 0.002Ac ment is e lives //1.15))/Acc	139.97	0.04Ac say, 2 pe		gives	Omr
.5.2	1" - Ground Floor Cross Section :use eq nu = 1 + u Percentage of longitu As, should generally I greater o Assuming that the pe Asc = 0.02 Substituting Net into (1.379*10*6)/Ac(0.85*3: 8117.65/Ac=1.65 For a square column	183.9 juation below 0 = 1 + Asfva/P admal reinfor- lie within the f 0 10 Nea/ f forcentage of r Ac the above eq 0/1.5)=1+ ((0.0 1 53720.3 b = h = v5372 square columnary	7.29 7 to size to see the see se	48.6 the column g limits 0.002Ac ment is e lives //1.15))/Acc	139.97	0.04Ac say, 2 pe		gives b= 30	0mn
.5.2	1" - Ground Floor Cross Section :use eq nu = 1 + u Percentage of longitu As, should generally I greater o Assuming that the pe Asc = 0.02 Substituting Net into (1.379*10*6)/Ac(0.85*3) At = For a square column Therefore a 300 mm	183.9 juation below 0 = 1 + Asfva/P admal reinfor- lie within the f 0 10 Nea/ f forcentage of r Ac the above eq 0/1.5)=1+ ((0.0 1 53720.3 b = h = v5372 square columnary	7.29 7 to size to see the see se	48.6 the column g limits 0.002Ac ment is e lives //1.15))/Acc	139.97	0.04Ac say, 2 pe		gives b= 30	0mn
.5.2	Cross Section :use eq nu = 1 + u Percentage of longitu As, should generally I greater o Assuming that the pe Assuming that the pe (1.379*10*6)/Ac(0.85*3) Ac = 50 or a square column Therefore a 300 mm 4. Structural Analysis	uation below $0 = 1 + Asfyd/A$ adinal reinfor- lie within the f O 10 Ned/ fi forcentage of r Ac the above eq $0/4.5) = 1 + (0.0)$ $5 = 20.25$ b = h = V5372 square colum	7.29 7 to size to see the see se	48.6 the column g limits 0.002Ac ment is e lives //1.15))/Acc	139.97	0.04Ac say, 2 pe		gives b= 30	Omr
.5.2	Cross Section :use ea nu = 1 + u Percentage of longitu As, should generally it As, should generally it As = 0.02 Substituting Nea into (1.329-1.046)/Ac(0.85-3.8117.65/Ac=1.85-8117.65/Ac=1.85	uation below $0 = 1 + Asfyd/A$ adinal reinfor- lie within the f O 10 Ned/ fi forcentage of r Ac the above eq $0/4.5) = 1 + (0.0)$ $5 = 20.25$ b = h = V5372 square colum	7.29 7 to size to see the see se	48.6 the column g limits 0.002Ac ment is e lives //1.15))/Acc	139.97	0.04Ac say, 2 pe		gives b= 30	0mn

	k beam A = 2(EI/L)A = (2*E*300*750^3)/(12*5000) = 4.22 × 10^6 E	
	k beam B = 2(EI/L)A = (2*E*300*750^3)/(12*5000) = 4.22 × 10^6 E	
	k column = EI/L = (E+300+300^3)/(12+2400) = 2.1825 × 10^5 E	
	ка =К2	
EC2: PD		
6687 CL 2.10	kg = kcolumn g/(kbeamA + kbeamB)= (2.1825*10^5)E/2(4.22*10^6)E = 0.033	
C1 2.10	kH = 0.1 (since column is assumed to be fully fixed at the base)	
	kH = 0.1 (since column is assumed to be fully fixed at the base)	
1	lo= 0.5l sqrt{[1+k1/(0.45+k1)][1+k2/(0.45+0.1)]}	
	0.5*2400 sqrt{[1+0.1/(0.45+0.1)][1+0.1/(0.45+0.1)]} = 1845 mm	
	Radius of Gyration	
1	i= sqrt(I/A)	
1	sqrt[(bh^3 /12)/(bh)]= h/sqrt(12)= 300/sqrt(12) =	
	i= 86,60mm	
CI.5.8.3.2	Slenderness ratio	
	λ = lo/l = 1845/86.60 = 21.3	
1		
	Critical Slenderness Ratio	
CI.5.8.3.1	Alim = 20 ABC*sqrt(n)	
1	$A = 0.7$, $B = 1.1$, $C = 1.7 - r_{m}$	
1	C = 1.7 - (M01/M02) = 1.7 - (-29.4/58.8) = 2.2	
	n= Ned/Aefed = 1379.07 × 10^3 /300 × 300 × (0.85/1.5) × 30 = 0.9	
	λlim = 20 +0.7+1.1+2.2+sqrt(0.9) = 35.71	
	λlim > λ therefore column is not slender	(stocky) short
	and M = 0 kNm	braced column
	5. Reinforcement	
I	Effective depth,d = h - cover - Dlink - Dbar/2	
	300 - 30 - 8 - 20/2 = 252 mm	d= 252mm
	Minimum design moment, MEd	
	Med = Max{ Mo<, @o Ned}	
CI.6.1(4)	All compression members are subjected to a minimum ecentricity	
	Minimum ecentricity, eo= h/30 = 300/30 = 10 mm < 20 mm take 20mm	
	Minimum design moment = eo NEd = (20/1000) * 137527.58 kNm	
1	First order end moment, Moz = Max { Mtop , M bottom } + ei .NEd =	
I	ei = lo/400 = 1845/400 = 4.6125	
I	Mtop = 27.53*2 = 55.16	

	Mos=	555.16+4.6125 = 59.7725 kNm	ř
	Med = Max Med = 59.7	× (59,7725,27.58) 725 kNm	
	1st to Grou		
	Ned/bhfck = Med/bhfck =	(1379.07*10^3)/(300*300*30) = 0.51	
	$dz = \Phi/2$ $dz/h = 40/3$	+ cnom = 20/2+ 30 = 40 mm 300 = 0.133	
column design	for d2/h =	mn design charts 0.1 Asfyk/bhfck = 0.2	
chart	for d2/h =	0.15 Asfyk/bhfck = 0.2 As*500/(300*300*30)= 0.2 As reg = 1080 mm^2	Main reinforcement
CI 9.5.2		20, Asp= 1257 mm^2 0.002 Ac < As< 0.04 Ac	Provide 4H20
	0.002 Ac= 0.04 Ac=	0.002*300*300 = 180 mm^2 0.4*300*300 = 3600 mm^2	
	Transvers	180< 1257< 3600 mm^2 e (links) Reinforcement	Asp OK
CI.9.5.3	Diameter	of links is the greater of (6 mm or 1 /4 Φ) = 1 /4 \times 20 = 5 mm Take Φ link = 8 r	n nm
	Spacing of	links should not exceed the lesser of: 0 × 20 = 400 mm (ii) least dimension of column = 300 mm (iii) 400	
	2nd floor to	Take spacing = 200 Provide H8 @200 mm	Links H8 @200 mm
CI 6.1(4)	Minimum First order Mtop = Mo2= Med = 44.5		Nm red
- 1	Longitudinal b		
Į.	NEd/bhfck =	(1379.07*10^3)/(300*300*30) = 0.51	
	MEd/bhfck =	(59.7725*10^6)/(300*300*30) = 0.074	
	d2/h = 40/300) = 0.133	
			Provide
	From column	design charts,	4H20
	А	sfyk/bhfck gives no value hence use 4T20	links H8@200mm
	Provide 4H20	main reinforcement, and links of H8 at 200mm for all	all floors

Figure 7: Hand Calculation using Eurocodes Standards

The table below is a summary of the design of the critical members as carried out by hand calculation, TeklaTedds and ProtaStructure

Critical Element		Hand Calculation	TekklaTedds	ProtaStructure
SLAB	Area of steel required	316mm ²	317mm ²	200mm ²
	Area of steel provided	T10 @ 200C/C,	T10 @ 175C/C	T10 @ 200C/C,
		Area= 393mm ²	Area=449mm ²	Area= 392mm ²
BEAM	Area of steel required	1772 mm ²	2385mm ²	1381mm ²
(Highest moment				
was considered)	Area of steel provided	4H25	3H25+2H25	3H16+ 1H32
		Area= 1963mm ²	2484mm ²	1407mm ²
COLUMN	Area of steel required	1080mm ²	N=1379KN	N=2007KN
		N=1379 KN		
	Area of steel provided	4H20	6H16	6H20
		Area= 1257mm ²	Area=1206mm ²	Area=1886mm ²
COLUMN BASE	Area of steel required	1761mm ²	2607mm ²	3000mm^2

International Journal of Latest Research in Engineering and Technology (IJLRET) ISSN: 2454-5031

www.ijlret.com || Volume 10 - Issue 05 || May 2024 || PP. 01-09

www.ijirei.com // vo	iume 10 - Issue 05 // Ma	ty 2024 11.01-09			
	Area of steel provided	H16@300C/C	H16@200C/C	H16@ 200C/C	1
		Area= 1809 mm ²	Area= 3016 mm ²	Area= 3016mm ²	
		2700*2700*600mm	2800*2800*600	3000*3000*600	
			mm	mm	

4. Conclusion and Recommendation

In every design process, use of both software and hand calculations is encouraged. Software most especially BIM software save on time but should be complimented with hand calculations of at least the critical members to ascertain the accuracy of the software. For actualization of efficient, safe and economical structures, construction should be done in adherence to the design provided. The actualization and construction of this design will reap several benefits like increasing employment, increasing the doctor to patient ratio hence improving the health sector and decreasing the pressure imposed on the school of medicine available in Kenya.

References

- [1]. W. D.Smith, "Hippocrates," 12 October 2023. [Online]. Available: https://www.britannica.com/biography/Hippocrates.
- [2]. SAMJ and S. A. med, "The UCT department of medicine at 90 years- continuity and change," *South African Medical Journal*, 2010.
- [3]. Meg, "Kenya Blog," 22 July 2017. [Online]. Available: https://kenyablog.com/the-first-medical-school-in-kenya.
- [4]. Kenya Medical Practitioners and Dentists Council, "Kenya Medical Practitioners and Dentists Council," 2019. [Online]. Available: https://medicalboard.co.ke/functions/approved-training-institutions/.
- [5]. University of Eldoret, "University of Eldoret," 2024. [Online]. Available: https://www.uoeld.ac.ke/about-us.
- [6]. P. Muthoka and L. Gitei, "Kenya News Agency," 10 May 2023. [Online]. Available: https://www.kenyanews.go.ke/kmpdu-decries-doctor-shortage/.
- [7]. Faculty of Health Sciences- Queen's University, "Room Reservation Services School of Medicine Building," 2024. [Online]. Available: https://meds.queensu.ca/administration/room-reservation-services-school-medicine-building.
- [8]. UMass Chan Medical School, "About UMass Chan Medical School," 2024. [Online]. Available: https://www.umassmed.edu/about/directions/frequentlyusedrooms/.
- [9]. European Committee for Standardization, Design of concrete structures: General rules and rules for buildings, Brussels: European Committee for Standardization, 2004.