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Abstract: In this article, we will explore the Adomian Decomposition Method, its theoretical foundation, and
the computation of Adomian polynomials. Furthermore, we will investigate the application of the ZJ transform
in conjunction with MDA for the solution of first- and second-order nonlinear ODEs. Through illustrative
examples, we will analyze the effectiveness and potential of this hybrid approach for obtaining approximate
analytical solutions to relevant nonlinear problems.
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Introduction:

Nonlinear ordinary differential equations (ODEs) model a wide range of complex phenomena in diverse
scientific and engineering disciplines, from fluid dynamics and heat transfer to biology and economics.
However, the intrinsically nonlinear nature of these equations often makes exact analytical solutions difficult to
obtain. Consequently, the development and application of robust and efficient approximate numerical and
analytical methods has become an active and crucial area of research.

Among the powerful analytical techniques for addressing nonlinear ODEs, the Adomian Decomposition
Method (ADM) has emerged as a versatile and effective tool. Introduced by George Adomian in the 1980s,
ADM offers a methodology for obtaining convergent series solutions without requiring linearization,
discretization, or the introduction of small perturbation parameters, features that often limit the applicability of
other traditional methods. The cornerstone of ADM lies in the decomposition of the nonlinear operator present
in the equation into a series of specific polynomials, known as Adomian polynomials, which depend on the
series components of the solution.

In parallel, the use of integral transforms, such as the Laplace transform, has proven invaluable in
simplifying and solving differential equations, especially those with linear terms and well-defined initial
conditions. The Laplace transform converts a differential equation into an algebraic equation in the transform
domain, which is often easier to solve. Subsequently, applying the inverse transform allows the solution to be
obtained in the original domain.

The strategic combination of the Adomian Decomposition Method with integral transform techniques has
led to promising hybrid approaches for the treatment of nonlinear ODEs. By applying an integral transform to
the original differential equation, the linear terms can be simplified, while the MDA handles the nonlinear part
by generating the corresponding Adomian polynomials. The solution in the transform domain is then obtained in
series form, and applying the inverse transform provides the solution in the original domain.

This combined approach can offer several advantages, including the potential acceleration of the
convergence of the solution series, simplification of the handling of initial conditions, and the obtaining of
approximate analytical solutions with a high degree of accuracy.

Overview of the Combined Method (Adomian-ZJ) for Second-Order Nonlinear ODESs
Let us consider a second-order nonlinear ODE of the general form:
L(u(x,t)) + R(u(x,0)) + N(u(x,t)) = h(x,t)

We have:

o L(u(x,t))=au"(x,t)+bu'(x,t) represents the highest order linear operator (with a, b >0).

o R(u(x, t)) represents the remaining lower-order linear operator.

o N(u(x, t)) represents the nonlinear operator.

e h(x, t) is the non-homogeneous function (source term).
Along with the initial conditions:
U(0)=c0,u’(0)=clo u(0) = f(x)u (0) = g(x)
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Step 1: Applying the ZJ Transform

We apply the ZJ transform, denoted by ZJ {-}, to both sides of the ODE:

ZIH{L(u(x, ) F+ZIH{R(u(x, ) }+ZI{N(u(x, t))}=23{h(x, t)}

Using the properties of the ZJ transform for first and second order derivatives with constant coefficients:

ZI{u(, t)}:i 5 — y(x,0) ﬁzia —c0Z

ZJ{u"(x, t)}— =9 — y(x, 0) ——y'(x, 0) - cOﬁ— —cl=— ﬁ
Applying the transform to Imear operators

2 n
ZXL(u(x, 0)}=a(7 ¢ - cO a1 —)+b(— —c02)

ZIR(u(x, D)}=L{r (% t)+r0u(x, 0}=r (é 9 — 05+, 2)(@)

(Here, we assume that R(u(t)) is a first or zero-order linear operator with constant coefficients r; andr; to
simplify the notation.

The transform of the nonlinear part remains in its general form for now:

ZI{N(u(x, 1))}=ZI{N(u)}

And the transform of the source term isZJ(H)=2J{h(x, t)}.

Substituting these expressions into the transformed equation:

ZZ . n n Z A n Z A n N
a3 - co% —cl ﬁ?)+b(E<p — 0Dy (¢ —co E)41023(0) + ZIN(u)} = ZI(H)

Step 2: Algebraic Solution in the Domain of ZJ
We regroup the equation to solve algebraically for ZJ (), isolating the terms that depend on ZJ () in a broken-
down way

( GtbIAn I ro) 7)(#)= ZI(H)+a (coﬁ +c1Z )+bc06 + r1c0 - ZI{N(u)}
And with the initial conditions not being constant, we now have:

26— 0L - g0 EHZHRU®)} +ZHNU(O)} = ZHh (0}
We regroup the equation to solve algebraically for ZJ($):
B" B"
oo [T B} (RO + HNW)

B2 g B2

Step 3: Application of the Adomian Decomposition Method

Now, we apply the MDA to solve the algebraic equation in the domain ZJ. We assume that the solution
u(t) can be expressed as an infinite series. Using the superpaosition principle, the solution can be represented as
an infinite series. Y.o_o @, (x, t)

If we observe the nonlinear operator Nu(x, t) from our equation, we decompose it as a series of
Adomianpolynomials as Nu(x, t) = Y7o A, (x,t) where An are Adomian polynomials of u, and it can be

determinedby the relation
1 d" Eln
= ar i

Using our previous equations, we can recast

N @+ g0 3
2 (Z Pn t)) T TI0T | A0@)  HREO) B4 0)

72
82 g2 82 52
When we compare both sides of the equations in terms of @1, @¢, @, +1, We have
- f(x) % +9(x) ﬁ— PRLIC)
Z Po(x,t) = 72 )
n=0 B2 sz
_UR(@o(x 1))} ZJ o Ao(x, 1)}
Z P1(x,t) = 72 - 72
n=0 g2 82
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R _ ZHR(@1(x, )} ZH{ET—0 A1 (x, D)}
> oot = - -

72 72

n=0 2 2

The preceding terms, depending on how far of the approximation can be determined by the given
recursiverelation conn > 1:

iA RG] TETe An(x, )}
(pn+1(x' t) - = -
n=0

72

72
B2 2
The accuracy of the approximation increases with the number of terms included in the sum, now. If we
apply the inverse ZJ transform to the above equation, we get

mmmmo»+mmaawﬁv

2

Un+1 (xr t) = _Z]_l (
B2 B2
Example 1
Let the Nonlinear Second Order Ordinary Differential Equation be
y+e'=0
With y(0) = 1y (0) = 0
By the ZJ Transformed, transforming the E.D.O.
Z][y'1+zj[e’] =0

" B B z2
y'=-_y (x,u)—Fy(x,0)+ F(lethI.C.
wo__ ﬁ” Zz 5 th B" ZZ D — 7 y
y _—?+ﬁ—2<p tus—?+ﬁ<p— —Z] [e”]
2 v 2
P = B—Z '87) —f—z Z] {7} Now the reverse
Bn+2 2 n+2 ,82
y(@) = 74 {e}=2]"" <z_3) -zj! [;Z] {ey}]

ﬂﬂ=@i—ﬁﬂm= =t thus £ =y,
Z3Bn+2 , 22’32
y@©) =t— ZJ‘l(Z—ZZ] [e¥0]) thus Z](e")

n+1

and this is

~ therefore by the Adomian method

2(z—-p)

3 B 2 ﬁn+l 3 B ﬂn+3
yO=t-2" (?(z(z-ﬁ))) =t=27 <Z3(z—ﬁ))

1 1 1 1
=~ = = n_-__
<Bn+3z3 (Z _ %)) Z3[n+3 %‘1) z3p"*2(zf — 1) * 2P z2B%2(zf — 1)
=withy, =t—e"+1

Now taking inverse

Now n=1
The Adomian Series is

Now the Adomian polynomials
A = }’1ey0
Ay =2+ y%)eyo
v
Az =3+ 0y + T)eyo
yy=t—et+1
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)
Y, =—Z] 7" (IZ?—ZZ][yleV0]>

Now replacing
2
-ZJ71 <ﬁ ZJ[t —et + l]e‘) thus

Y2 =
n! gt
Z][tet — e?* + et]Thetransformist™e*t = %
)
tet = ﬁiz
z

And thus solving each term by its transform and its inverse
2t
e t 5

— —_ _ tpt t
Va2 4 te" +e 272

2
y=t—(ef—t—1)+ e—t—tet+et—£—5
4 2 4

Simplifying we have the solution
2t

) = 3t 1 + t

YO~ 5 -gtg e

Example 2

Let the Nonlinear Second Order Ordinary Differential Equation be
y +y2=0

With y(0) = 1y'(0) = 0
By the ZJ Transformed, transforming the E.D.O.
Z][Y |+z/by*1=0 - Z][y |= —Zny21
n
' o _F (x,0) + (x,0) +Z_pwiththel.c
y Z y B y i Bzzy ﬂz (p

y'=0- [; 5 @thus

N
N
m*?

n+1 2
'8__ ﬁ ZJ[y*ITakingtheinverseZ]
n+1 2
y(©) = ZJ” [B ] zj™! Iﬁ ZJly°]

y(©) = ( 2,81”“) zp" __,3_ 1 thus

HE 2

¢ =

y&)=1-2]"

ByAdomian
yo=1wehavey,=1= y3

2
Yns1 = —ZJ 7! [f—zll[yz]] s forn=0

2 2
L il = -z |G

i —Z]7!
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o )

1 ., 1 t?
= <Z4B”+3> *Zp" = (23/33) )
£2
NowA; = 2y,y;AdomianpolynomialsA; = 2(1) (— ?) = —t? thus

Now with n=1

ﬁZ

2
oz A1]l=—zr1 [—

y, = —Z]7! Z][—tz]l

B ‘32 Bn+3 Bn+5
()

ﬁn+5 2 N t4
~ 2 26 =Z6ﬁn+5*zﬁ 5'35 12

. . t2 t* 6
And so the solutionisy(t) =1 —-—+ - ——+
2 12 12
Example 3
Let the Nonlinear First Order Ordinary Differential Equation be
y =y’y(0) =1
Porla Transformada ZJ, transformando la E.D.O
, . gtz
ZJly'1 = ZJ[y*lasi = —y(x, 0)7 + ‘[—;q)
p"  z N A [ ,
I +ﬁZ][y ]—><p—z ~ +ZJ[y3]
R Bn+1 ,8
¢ = +721y°]
n+1 1 1
ﬁ LT
ﬁn+1 B

y=1+2" [;Z/[yﬂ

The Adomian Series
Yo=1

B

Y1 =2Z]7" —Z][yg]

ByAdomianthisisy = Z ¥, (%)

Z 7 =142 |2z |Z yn(x)H

With y3 = ¥*_, An(x)thusis = y§ withy§ = (1)3

Now with n=0

=2z §ZJ[y§] =2z IgZJ[ll
~ ‘3 Bn+1 ~ Bn+2
-]

= tandnowy; =t

=7

Now the reverse
1

1
Z3Bn+2 zp" = 7232

Now with n=1
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v, =2]7" Ay

n=0

§Z] withtheAdomianpolynomialA; = 3ydy,

And

i[33’§3’1]ﬂ

n=0

y2 = 27! ng]

v =27 [521[3(1)3(0]] =27 I;ZJ[st]]

ﬁ ﬁn+2 ﬁn+3
-]
3 3xzp" 3

¥ ZApnas T Zapgn+s T 533
3t2 3t? .
=~ TWlthyz = Tthesolutloms

1
3t?
y=1+t+7+"'

Example 4
Let the Nonlinear First Order Ordinary Differential Equation be

y+y*=ty(0)=0

So again applying the Transform ZJ[y'] + Z][y?] = ZJ[t]

n

ZJlyl= -y, 0) % + %@y@)\: 0

ZJly1 =3 pso5 o+ 7]y’ = 2] ()
n+2

G0+ ;Z][An(t)] = 710 =" as
'Bn+3 B

z4 z

Z ZJ[A,,(t)] Now using Adomian
=0

i " n+3 i
> o= IS ztanco
n=0

n=0

The Adomian Series

'Bn+3
="

A~

B
Prar = _EZ][An(yO'YD e Ymyn =0

Now applying the inverse with n=0

n+3 t2
ZJ @il =2) [ pr ]asiyo =5

Fory, (t) ,
2 4
A=y =(5) = Nowzjla)]
t4 ‘Bn+4
Z] [Z] =6 pra Nowfind¢p
n+4 n+5
¢ = —ng[Ao] = —§<6ﬁz6 ) = —6'BZ7
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Now the reverse

n+5 5
zj! 6ﬁ — _ L sothesolutioni
I 77 ——%sot esolutionis
2
Y=3"2"

Example 5
Let the Nonlinear First Order Ordinary Differential Equation be

y' = 2ky — 3ky* + ky*y(0) = =
So again applying the Transform
Z/[yn] = ZJ[2Ky] = ZJ[3Ky®] + ZJ[Ky*]

0+ 26 = 2Kz]ly) - 3K2)1y) + KZJ1y?)

;
“o. sﬁ— +20 = 2K2]1y) - 3KZJ 1Y) + K2y
n+1
o=05" 2Lzt 3L kz + Lz

Now the reverse

BK

PR _ -1
2—27J1y] +2]

n+1
yt) =2z]7! [ B

g
~KZJ1y’]

- 3ﬁ7KZ[y2]

]+Z]

Now

Bn+1

Bn+1 1

-1 n
1

= 0.5 <E) = 0.5 thisisy, = 0.5

Thus by the Adomian Series
yo = 05

Vs = 2" [ ]+ 27t [ 2]

K
! Z%Z][yo]

Now withn=0

BK

y, =Z]71 272][0.5] =7

_1|BK
! 1721[1]

y,=2j! [3 371(2][0.5]2] =Zj! I0.75 ﬁTKZ][l]

BK

PK -1 0.125721[1]

v =27 [ zlosP| = 2

Now with each one

) [ﬁ_K <Bn+1>] ,Bn+2k _y [Kﬁn+2]
z \ z?2 z3 /-
1 zp"
= K[ 3Bn+2] =k [Z3ﬁn+2] [ 2[;2] Kt
n+1 n+2 n+2
-7 [0751(/3([32 )] 7] [075 KB ]—075K[ﬁz ]

Now the reverse
0.75k " 0.75k
= - M_n” *x zZf" = W —0.75kt

www.ijlret.com 23 | Page



International Journal of Latest Research in Engineering and Technology (1JLRET)
ISSN: 2454-5031
www.ijlret.com || Volume 11 - Issue 07 || July 2025 || PP. 17-26

n+1
=7J1 [0.125ﬁK (ﬁ

—|— )] ~ 0.125kt
z \ z
y1 = kt —0.75kt + 0.125kt = (k — 0.75k + 0.125k)t
Thus y; = 0.375kt with the y, we havey = 0.5 + 0.375kt

Now n=1, with the Adomian polynomials
vt = Ay = 2yom Py = 3y6y = ¥i
A; = 2(0.5)(0.375kt) = 0.375kt
B; = 3(0.5)2(0.375kt) = 0.28125kt

y, = 7] [2 %Z][yl]l =71 [2 221[0.375“]]
v =2 3L 2y = 27 3L 21
v =2 L ziil| = 277 [2 L 2y18,)

We proceed

] [ 2
zj1 [2%(0.3751()21&] =ZJ]7110.75 k?BZ][t]

2 n+2 ) } 2 pn+3
Z]"1 [0.75%3( 73 )] = Z]"1 [0.75k 54 Z](t)]
1

1
= 0.75k? (z4ﬁ"+3> * zB" = 0.75k? <Z3B3> =
2

t
= 0.75k? == 0.375k?t?

The Second Term

3Bk kZ
-z %Z][Osﬁkt] =-z]! 1.1257521[15]
4 k2pnts , ~1.125 k2
= —7J7 |1125———| »= —1.125k (Z‘ﬁ—"“’)*z -
tZ
= —1.125k27 = —0.5625t%k?
The third term
k 0.28125k?
=z]! 7321[0.281251“] =z]7! fﬁZ][t]l

=71

VA

0.28125k%B [ +2
B[ﬁ23 H = 0.28125 k*t?

y, = 0.375k?t? — 0.5625t%k? + 0.28125k?t?
y, = 0.09375k?*t? andthe
Solution is
y =0.5+0.375kt + 0.09375k?t> + ---
Now the exact solution is

1
®)=1-——
Y V1 + 3e2kt

Checking with k=1 and t=0.1

With y(0.1) = 0.53543 and y(0.1) = 1 — ——

W ~ 0.538 It's right
+3e“t™

www.ijlret.com 24 | Page



International Journal of Latest Research in Engineering and Technology (IJLRET)
ISSN: 2454-5031
www.ijlret.com || Volume 11 - Issue 07 || July 2025 || PP. 17-26

Conclusions
The Adomian-ZJ method for second-order nonlinear ODEs implies:
1. Apply the ZJ transform to the ODE and initial conditions.Solve algebraicallyforZJ ()in terms of
L{N(u)}.
2. Decompose the solution ZJ (¢)and the nonlinear operator L{N(u)}in series.
Determine the components@,, (x, t)recursively using the transformed Adomian polynomials.
4. Apply the inverse ZJ transform to each @, (x, t) to obtain the components @, (x, t)of the solution in the
original domain.
5. Approximatethesolutionu(x, t) byaddingthefirstcomponentsobtained.

@

The combination of the Adomian Decomposition Method (ADM) with the ZJ transform (Adomian-ZJ
method) as well as the Adomian Laplace method offers several significant advantages over classical methods for
solving certain nonlinear ODEs:

1. Does not require linearization or perturbation:
+ Classical methods for nonlinear equations often rely on linearizing the problem or applying perturbation
techniques that assume the presence of a small parameter. These approximations can be restrictive and
may not be valid for problems with strong nonlinearities or without evidently small parameters.

2. Provides solutions in the form of convergent series:
» The MDA searches for the solution as an infinite series whose components are determined recursively. If
the series converges, it provides an approximate analytical solution that can approach the exact solution
with sufficient terms.

3. Avoids discretization (unlike numerical methods):
» Many classical methods for nonlinear equations, especially when analytical solutions cannot be found,
resort to numerical techniques that involve discretization of the domain. This introduces
discretizationerrors and can be computationally expensive.

However, it is important to keep in mind some limitations:
» The convergence of the Adomian series is not always guaranteed and may depend on the nature of the
nonlinear equation and the problem conditions.
« Calculating Adomian polynomials for complex nonlinearities can be laborious.

The Adomian-ZJ method offers a powerful and elegant alternative to classical methods for solving
certain nonlinear ODEs, especially those where linearization or perturbations are unsuitable or where an
approximate analytical solution is sought without resorting to discretization. Its ability to handle nonlinearities
directly and the simple incorporation of initial conditions are key advantages.
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