15514. 2454-5051

www.ijlret.com || Volume 11 - Issue 10 || October 2025 || PP. 29-33

Strictly U-Pseudo Regular U-spaces

Prof. Dr. Swapan Kumar Das,

Department of Mathematics, University of Development Alternative (UODA), House No.-80, Satmasjid Road, Dhanmondi, Dhaka, Bangladesh

Abstract: In this paper Strictly U -pseudo regular U- spaces have been defined and a few important properties of these spaces have been justified. This is the fourth paper of U- Pseudo regular U- spaces. A number of important theorems regarding this space have been established. Strictly U -pseudo normal is not defined for U-spaces.

Keywords: U- space, U-Regular, U-Compact, U-Continuous, Strictly U-Pseudo Regular U-Spaces

Mathematics Subject Classification: 54D10, 54D15, 54A05, 54A40, 54G12, 54C08

I. Introduction

A topological space X is said to be **regular** if for each non-empty closed set F of X and any point $x \in X$, such that $X \notin F$ (i.e. x is the external point of F), there exist two disjoint open sets V and W such that $x \in V$ and $F \subseteq W$. In Paper [3] a pseudo regular topological spaces has been defined by replacing a closed subset F by a compact subset K in the definition of a regular space. The concept of U- Pseudo regularity has been extended to U- spaces in previous paper [2]. These spaces were introduced and studied in [4] and [5]. Here the concept of Strictly U-Pseudo regularity of [1] has been extended to U-spaces. In this paper we have given examples of Strictly U-pseudo regular U- spaces. A number of important theorems regarding these spaces have been established.

Here we have introduced strictly pseudo regular U- spaces and studied their important properties. Many results have been proved about these U-spaces. Strictly U- pseudo normal U –spaces is not established. We have also established characterizations of such U-spaces.

II. Preliminaries

We begin with some basic definitions and examples related to U– spaces.

U-Spaces

Definition 2.1[5]: A U-structure on a non empty set X is a collection \mathcal{U} of subsets of X having the following properties: (i) Φ and X are in \mathcal{U} , (ii) Any union of members of \mathcal{U} is in \mathcal{U} .

The ordered pair (X, **%**) is called a **U-space**. A U-space which is not a topological space is called a **proper U-space**. The members of **%** are called **U-open set** and the complement of a U-open set is called a **U-closed set**.

A U- structure and a U-space have been called a supra-topology and a supra-topological space respectively by some authors (see [6], [7], [8], [9])

In general we have

Topological space \Rightarrow U-space, Topological space \Leftarrow U-space

Example 2.1: Let $X = \{a, b, c, d\}$, $\mathcal{U} = \{X, \Phi, \{a, b\}, \{a, c\}, \{a, b, c\}\}$. Here (X, \mathcal{U}) is a U-space but nota topological space.

Definition 2.2 [4]: Let (X, \mathcal{U}) be a U-space. A **U-open cover** of a subset K of X is a collection $\{G_{\alpha}\}$ of U-open Sets such that $K \subseteq U_{\alpha} G_{\alpha}$.

Definition 2.3 [4]: A U-space X is said to be U-compact if for every U-open cover of X has a finite sub-cover.

A subset K of a U-space X is said to be **U-compact** if every U-open cover of K has finite sub-cover.

Example 2.2: Let X = N, $\mathcal{U} = \{2N, 4N, 8N, 16N, \dots, 2^n N, \dots, N, \Phi\}$. Then X is U-compact.

www.ijlret.com || Volume 11 - Issue 10 || October 2025 || PP. 29-33

Let $\Phi \neq A \subseteq X$ and **C** be a U open cover of A. Let n_0 be smallest + ve integer such that $2^{n_0} N \in C$.

Then $A \subseteq 2^{n_0}N$. So $\{2^{n_0} N\}$ is a finite sub-cover of **C**. Therefore any subset K of X, $K \ne X$ is U-compact.

Definition 2.4 [4]: A U-space X is called **Hausdorff** if, for each $x, y \in X$, $x \ne y$, there exists disjoint U- open sets G and H in X such that $x \in G$, $y \in H$.

Example 2.3: Let $X = \{a, b, c, d\}$, $\mathcal{U} = \{\{a\}, \{d\}, \{b, c\}, \{b, d\}, \{a, d\}, \{a, c\}, \{a, b, c\}, \{b, c, d\}, \{a, c, d\}, \{a, b, d\}, X, \phi\}$. Then (X, \mathcal{U}) is a Hausdorff U-space.

Definition 2.5 [4]: A U- space X is called U- regular space if for any U- closed set F of X and any point $x \in X$, such that $x \notin F$ (i.e. x is the external point of F) there exist two disjoint U-open sets G and H such that $x \in G$ and $F \subseteq H$.

For a U-space, 'Hausdorff' and regular are independent concepts.

Example of a U-space which is regular but not U-Hausdorff space

Example 2.4: Let $X = \{a, b, c, d\}$, $\mathcal{U} = \{X, \phi, \{a\}, \{d\}, \{a, d\}, \{a, b, c\}, \{b, c, d\}\}$. Then (X, \mathcal{U}) is a U-space. Here the U-closed sets are X, ϕ , $\{a\}$, $\{d\}$, $\{b, c\}$, $\{a, b, c\}$, $\{b, c, d\}$. We easily sec that X is a U- regular space but it is not U- Hausdorff space, since b and c cannot be separated by disjoint U- open sets. Also X is not a topological space.

Definition 2.6 [4]: A U- space X is said to be U- **completely regular** if for any U- closed subset F of X and $x \in X$ which does not belongs to F, there exists a U- continuous function f: $X \rightarrow [0,1]$ such that f(x) = 0 and f(F) = 1. Here [0, 1] is considered as a sub space of the usual U-space R.

Example 2.5: The set of real numbers R is U-completely regular

Definition 2.7: Let (X, \mathcal{U}) and (Y, \mathcal{U}_1) be two U- spaces. A function $f: X \to Y$ is said to be U- **continuous** if for each U-open set Gin Y, $f^{-1}(G)$ is U-open set in X.

Example 2.6: Let $X = \{a, b, c, d\}$, $\mathcal{U} = \{X, \phi, \{a\}, \{a, b\}, \{a, c, d\}, \{b, c, d\}\}$

 $Y = \{p, q, r\}, \ \mathcal{U}_1 = \{Y, \phi, \{p\}, \{p, q\}, \{p, r\}, \{q, r\}\}.$ Let $f: X \to Y$ be defined by f(a) = p, f(b) = q, f(c) = r, f(d) = r. Then f is U- continuous.

Here (X, \mathcal{U}) and (Y, \mathcal{U}_l) are two U-spaces but not a topological spaces.

Definition 2.8 [4]: A U-space X is said to be U- **Normal Space** if for each paird is joint U-closed sets F_1 and F_2 , there exist U- open sets G_1 and G_2 such that $F_1 \subseteq G_1$, $F_2 \subseteq G_2$ and $G_1 \cap G_2 = \phi$.

 $Comments: Generally \ U-regular \ space \ is \ not \ U-normal \ space \ and \ U-normal \ space \ is \ not \ U-pseudo \ normal \ space.$

Example 2.7: Let $X = \{a, b, c, d\}$, $U = \{X, \phi, \{a\}, \{a, b\}, \{c, d\}, \{a, c, d\}, \{b, d\}, \{a, b, d\}, \{b, c, d\}\}$. Closed sets are $X, \phi, \{a\}, \{a, b\}, \{c, d\}, \{c\}, \{b\}, \{a, c\}, \{b, c, d\}$.

Here $\{a, b\}\subseteq \{a, b\}$ and $\{c, d\}\subseteq \{c, d\}$. \therefore X is U-normal space. Here $\{c, d\}$ is closed set, $b \notin \{c, d\}$. But there does not exist disjoint U-open sets containing band $\{c, d\}$ respectively.

D 1 **D** 1 **T** 3

Pseudo Regular U- Spaces

Definition 2.9[2]: A X U-space will be called **pseudo regular** if for every U-compact subset K of X and for every $x \in X$, $x \notin K$, there exist U-open sets G_1 and G_2 in X with $G_1 \cap G_2 = \emptyset$ such that $x \in G_1$ and $K \subseteq G_2$.

Example 2.8: Let X= Z, and The U-structure generated by $\{\{Z,\phi\}\cup\{(-\infty,a)\}|a\in Z\}\cup\{[(b,\infty)|b\in Z\}\}$, $\mathcal{U}=\{\{\{Z,\phi\}\cup\{(-\infty,a)\}|a\in Z\}\cup\{[(b,\infty)|b\in Z\}\}\}$. Then X is pseudo regular U-space.

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031

www.ijlret.com || Volume 11 - Issue 10 || October 2025 || PP. 29-33

Proof: The subsets of X are: $(-\infty,a)$], $a \in Z$(1), $[(b,\infty), b \in Z$(2), $[(c,d)], c, d \in Z$(3). The sets in (3) are finite, and so, compact.

If $A = (-\infty, a)$], for some $a \in Z$, then any U-open cover C of A must contain $(-\infty, a')$] where $a \le a'$. Then $\{(-\infty, a')\}$ is a finite sub cover of C. Thus, the sets in (1) are compact.

Similarly, we can show that the sets in (2) are compact.

Thus, every non empty subset of X is compact.

Let K be a compact subset of X and $x \in X$ with $x \notin K$.

Case-I: If K is a set of the form (1) i.e., $K = (-\infty, a)$, for some $a \in Z$, then $x \in Z$, x > a, ($x \ge a$ if $K = (-\infty, a)$)) Let choose $G_1 = [(a+1, \infty) \text{ if } K = (-\infty, a], G_1 = [a, \infty) \text{ if } K = (-\infty, a), \text{ and } G_2 = (-\infty, a)] \text{ if } K = (-\infty, a),$ $G_2 = (-\infty, a) \text{ if } K = (-\infty, a).$ Thus, in each case $x \in G_1$, $K \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$.

Case-II: If K is a set of the form (2), i.e. $K = [(b, \infty), \text{ for some } b \in \mathbb{Z}, \text{ then } x \leq b, \text{ or } x < b, \text{ according as } K = (b, \infty), \text{ or } [b, \infty).$

Let choose $G_1=(-\infty,b], G_2=(b,\infty),$ if $K=(b,\infty);$ $G_1=(-\infty,b),$ $G_2=[b,\infty)$ if $K=[b,\infty)$ Then for each case, $x \in G_1$, $K \subseteq G_2$ and $G_1 \cap G_2=\emptyset$.

Case-III: Now let K = [(c,d)], for some $c, d \in Z$. Then, (i) $x \le c$ and / or $x \ge d$, if K = (c,d), (ii) x < c, and/ or $x \ge d$, if K = [c,d), (iii) $x \le c$, and/ or $x \ge d$, if K = (c,d], (iv) x < c, and/ or $x \ge d$, if K = (c,d] For (i), we choose $G_1 = (-\infty,c] \cup (d,\infty)$, $G_2 = (c,d)$, for (ii), we choose $G_1 = (-\infty,c) \cup (d,\infty)$, $G_2 = [c,d]$, for (iv), we choose $G_1 = (-\infty,c) \cup (d,\infty)$, $G_2 = [c,d]$.

Then, for each case $x \in G_1$, $K \subseteq G_2$ and $G_1 \cap G_2 = \emptyset$. Thus, X is pseudo regular U-space.

Example 2.9: A U-space X may be regular but not pseudo regular.

Proof: Let $X = \{a, b, c, d\}$ and $U = \{X, \phi, \{a, b\}, \{c, d\}, \{a, c, d\}, \{a\}\}$.

Here closed sets are $\{c, d\}$, $\{a, b\}$, $\{b, c, d\}$, $\{b\}$, X, ϕ . Then (X, U) is U- regular. For, $\{a, c\}$ is compact, $b \notin \{a, c\}$, but $\{a, c\}$ and b cannot be separated by disjoint U-open sets. Here (X, U) is not pseudo regular.

III. Strictly U- Pseudo Regular U- Spaces

Definition 3.1: A U – space X will be called **Strictly U-pseudo-regular** if for each U- compact set K and for every $x \in X$ with $x \notin K$, there exists a continuous function $f: X \rightarrow [0, 1]$ such that f(x) = 0 and f(K) = 1.

Example 3.1: Let K be a U- compact subset of R and let $x \in R$ such that $x \notin K$. Since R is U- Hausdorff, K is closed and since R is U-completely regular, there exists a continuous function f: $X \to [0, 1]$ such that f(x)=0 and f(K) = 1. Thus R is strictly U- pseudo regular.

Theorem 3.1 [1]: Every strictly U-pseudo regular compact space is U-completely regular.

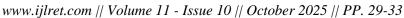
Proof: Let X be U-compact and strictly U-pseudo-regular. Let K be a closed subset of X and let $x \in X$ with $x \notin K$. Since X is U-compact, K is U-compact. Again, since X is strictly U-pseudo regular, there exists a U-continuous function $f: X \to [0, 1]$ such that f(x) = 0 and f(K) = 1. Therefore X is U-completely regular.

Theorem 3.2[1]: Every U-completely regular Hausdorrf space is strictly U-pseudo regular.

Proof: Let X be a U-completely regular Hausdorrf space. Let K be a U-compact subset of X and $x \in X$ with $x \notin K$. Since X is U- Hausdorrf, K is U-closed. Now, since X is U-completely regular, there exists a U-continuous function f: $X \to [0, 1]$ such that f(x) = 0 and f(K) = 1. Therefore X is strictly U-pseudo regular.

Theorem 3.3 [1]: A U-space X is strictly U- pseudo regular if for each $x \in X$ and any U- compact set K not containing x, there exists an U-open set H of X such that $x \in H \subseteq H \subseteq K^C$.

_



Proof: Let X be a strictly U pseudo regular space and Let K be U-compact in X. Let $x \notin K$ i.e., $x \in K^C$. Since X is strictly U-pseudo regular, there exists a U-continuous function $f: X \to [0,1]$ such that f(x)=0 and f(K)=1. Let a, $b \in [0,1]$ and a < b. Then [0, a) and [0, 1] are two disjoint open sets of [0, 1]. Since f is U-continuous $f^{-1}([0, a])$ and $f^{-1}([0, 1])$ are two disjoint open sets of X and obviously $x \in f^{-1}([0, a])$ and $f^{-1}([0, 1])$.

Let $U = f^{-1}([0, a])$ and $V = f^{-1}((b, 1])$. Then $x \in U$, $K \subseteq V$ and $U \cap V = \emptyset$. Then $U \subseteq V^C \subseteq K^C$.

So $U \subset V^C = V^C \subset K^C$. Writing U = H, we have $x \in H \subset H \subset K^C$.

Theorem 3.4[1]: Any subspace of a strictly U-pseudo regular space is strictly U-pseudo-regular.

Proof: Let X be a strictly U-pseudo regular space and $Y \subseteq X$.. Let $y \in Y$ and K be a U-compact subset of Y Such that $y \notin K$. Since $y \in Y$, so $y \in X$ and since K is U-compact in Y, so K is U-compact in X. Since X is strictly U- pseudo regular, there exists a continuous function $f: X \to [0, 1]$ such that f(y) = 0 and f(K) = 1. Therefore the restriction function f of f is a continuous function f: $Y \to [0, 1]$ such that f(y) = 0 and f(K) = 1. Hence Y is strictly U- pseudo regular.

Corollary: Let X be a U- space and A, B are two strictly U- pseudo regular sub space of X. Then $A \cap B$ is strictly U- pseudo regular.

Proof: Since $A \cap B$ being a subspace of both A and B, $A \cap B$ is strictly U- pseudo regular by the above theorem.

Theorem 3.5[1]: Every strictly U-pseudo regular space is U-Hausdorff.

Proof: Let X be a strictly U-pseudo regular space. Let $x, y \in X$. with $x \neq y$. Then $\{x\}$ is a U-compact set and $y \notin \{x\}$. Since X is strictly U-pseudo regular, there exists a continuous function $f:X \to [0,1]$ such that f(y)=0 and $f(\{x\})=1$. Let $a, b \in [0,1]$. And a < b. Then [0,a) and [0,1] are two disjoint open sets of [0,1]. Since f is U-continuous, $f^{-1}([0,a))$ and $f^{-1}([0,a))$ are two disjoint open sets of X and obviously $y \in f^{-1}([0,a))$ and $\{x\}\subseteq f^{-1}([b,1])$ i.e., $x \in f^{-1}([b,1])$. Therefore X is U-Hausdorff.

Theorem 3.6 [1]: Every strictly U-pseudo regular space is U-pseudo regular.

Proof: Let X be a strictly U-pseudo regular space. Let K be a compact subset of X and $x \in X$. with $x \notin K$. Since X is strictly U-pseudo regular, there exists a continuous function $f: X \rightarrow [0,1]$ such that f(x)=0 and f(K)=1. Let $a, b \in [0,1]$. And a < b. Then [0, a) and [0, 1] are two disjoint open sets of [0, 1]. Since [0, 1] is U-continuous, [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] are two disjoint open sets of X and obviously [0, 1] and [0, 1] a

Result and Discussion:

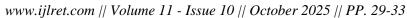
It has been proved that for U- spaces, Every strictly U- pseudo regular compact space is U- completely regular; Every U- completely regular Hausdorff space is strictly U- pseudo regular; A U- space X is strictly U-pseudo regular if for each $x \in X$ and any U- compact set K not containing x, there exists an U-open set H of X such that $x \in H \subseteq H \subseteq K^C$.; Any subspace of a strictly U- pseudo regular space is strictly U- pseudo regular; Every strictly U- pseudo regular space is U- pseudo regular.

References

- [1]. Biswas S.K., Akhter N. and Majumdar S. (2018), Strictly Pseudo Regular and Strictly Pseudo Normal Topological spaces, International Journal of Trend in Research and Development, Volume 5(5), ISSN: 2394 9333, 130 132.
- [2]. Das S. K., Majumdar S. (2023), Pseudo Regular I spaces and Pseudo Regular U- spaces, Bulletin of Mathematics and Statistics Research, Volume- 11, Issue- 1, 2023 (Jan March), ISSN 2384-0580, 18 24
- [3]. Biswas S.K., Akhter N. and Majumdar S. (2018), Pseudo Regular and Pseudo Normal Topological spaces, International Journal of Trend in Research and Development, Volume 5(1), ISSN: 2394 9333, 426 430.
- [4]. AkhterN., Das S.K. and Majumdar S.(2014), On Hausdorff and Compact U-spaces, Annals of Pure and

International Journal of Latest Research in Engineering and Technology (IJLRET)

ISSN: 2454-5031



- Applied Mathematics, Vol. 5, No. 2, 168 182.
- [5]. Das S. K., Akhter N. and Majumdar S. (2014), Generalizations of Topological spaces, Bulletin of Mathematics and Statistics Research, Vol. 2. Issue. 4, 439 446.
- [6]. Andrijevic D. (1996), On b-open sets, Mat. Vesnik, 48, 59 –64.
- [7]. Devi R., Sampath kumar S. and Caldas M. (2008), On supra α open sets and S_{α} -continuous functions, General Mathematics, Vol. 16, Nr. 2, 77 84.
- [8]. Mashhour A. S., et al. (April 1983), On supra topological spaces, Indian J. pure appl, Math, 14(4), 502-510.
- [9]. Sayed O. R. and Noiri T. (2007), On supra b-open sets and supra b-continuity on topological spaces, European Journal of pure and applied Mathematics, Vol. 3, No. 2, 295-302