

Optimizing Electrical Wire Selection by Integrating Entropy, MEREc, and Topsis Methods

Nguyen Duc Chinh, Pham Duc Hung

College of Economics and Techniques, Thainguyen University, Vietnam

Abstract: Solving multi-objective optimization problems is a fundamental task across various fields, including economics, management, and engineering. Two critical components of addressing these problems are determining objective weights and selecting an appropriate mathematical method for optimization. This study integrates three methods—Entropy, MEREc, and Topsis—to solve a multi-objective optimization problem aimed at identifying the optimal copper-core electrical wire among 28 available alternatives. Specifically, the Entropy and MEREc methods were employed to calculate the criteria weights, while the Topsis method was utilized to rank the copper-core wire types.

The results indicate that although the rankings of the electrical wires were inconsistent when using weights derived from different methods (Entropy vs. MEREc), certain alternatives maintained a consistent rank regardless of the weighting approach. The wire type associated with product code 20255114 was identified as the optimal choice among the 28 types evaluated in this study.

Keywords: optimization, weight method, Entropy method, MEREc method, Topsis method.

1. Introduction

Determining objective weights (also referred to as criteria weights) and selecting a Multi-Criteria Decision-Making (MCDM) method are two crucial tasks in ranking alternatives to identify the optimal solution among numerous available options [1-3]. To calculate criteria weights, one can apply objective weighting methods, subjective weighting methods, or hybrid weighting methods—the latter of which integrates both subjective and objective factors [4, 5]. Within this context, several studies have indicated that the use of objective weighting methods provides users with more accurate and transparent decisions [6-8].

Numerous objective weighting methods have been widely adopted across various fields, such as the Entropy method [9], MEREc method [10], SPC method [11], LOPCOW method [12], CRITIC method [13], and ITARA method [14], etc. Among these, the Entropy and MEREc methods have been validated for their high accuracy and are highly recommended for use [15]. Consequently, these two methods were selected for the current study.

Currently, there are hundreds of different MCDM methods, each developed based on distinct underlying philosophies [16]. Many prominent methods have been extensively utilized over time, including Topsis [17], SAW [18], PIV [19], VIKOR [20], COCOSO [21], MOORA [22], COPRAS [23], CODAS [24], and EDAS [25], etc. Among them, Topsis is regarded as the most well-known and frequently applied method [26]. This rationale explains why the Topsis method was also incorporated into this research.

Section 2 of this paper outlines the procedural steps for applying the Entropy and MEREc methods to calculate criteria weights, as well as the implementation of the Topsis method for ranking alternatives. The integration of these three methods—Entropy, MEREc, and Topsis—to rank various types of copper-core electrical wires is presented in Section 3. Finally, the conclusion regarding the optimal copper-core wire type identified concludes this article.

2. Methodology

2.1. Entropy Method

To determine the criteria weights using the Entropy method, the following sequential steps are implemented [27]:

Step 1: Construct the decision matrix consisting of m rows and n columns, where m represents the number of alternatives to be ranked (number of experiments) and n denotes the number of evaluation criteria for each alternative. Let x_{ij} be the value of criterion j for alternative i , where $j = 1, \dots, n$ and $i = 1, \dots, m$.

Step 2: Determine the normalized values for the criteria using formula (1):

$$n_{ij} = \frac{x_{ij}}{m + \sum_{i=1}^m x_{ij}^2} \quad (1)$$

Step 3: Calculate the Entropy measure for each criterion using formula (2):

$$e_j = \sum_{i=1}^m \left[n_{ij} \times \ln(n_{ij}) \right] - \left(1 - \sum_{i=1}^m n_{ij} \right) \times \ln \left(1 - \sum_{i=1}^m n_{ij} \right) \quad (2)$$

Step 4: Calculate the weight for each criterion using formula (3):

$$w_j = \frac{1 - e_j}{\sum_{j=1}^n (1 - e_j)} \quad (3)$$

2.2. MEREC Method

To calculate the criteria weights using the MEREC (MEthod based on the Removal Effects of Criteria) method, the following procedure is applied [28]:

Step 1: Construct the decision matrix (identical to Step 1 of the Entropy method).

Step 2: Calculate the normalized values using formulas (4) and (5):

+ For beneficial criteria (the larger, the better):

$$n_{ij} = \frac{\min x_{ij}}{x_{ij}} \quad (4)$$

+ For non-beneficial criteria (the smaller, the better):

$$n_{ij} = \frac{x_{ij}}{\max x_{ij}} \quad (5)$$

Step 3: Calculate the overall performance of the alternatives using formula (6):

$$S_i = \ln \left[1 + \left(\frac{1}{n} \sum_j^n |\ln(n_{ij})| \right) \right] \quad (6)$$

Step 4: Calculate the performance of the alternatives by removing each criterion using formula (7):

$$S'_{ij} = \ln \left[1 + \left(\frac{1}{n} \sum_{k, k \neq j}^n |\ln(n_{ij})| \right) \right] \quad (7)$$

Step 5: Calculate the absolute deviation values using formula (8):

$$E_j = \sum_i^m |S'_{ij} - S_i| \quad (8)$$

Step 6: Determine the criteria weights using formula (9):

$$w_j = \frac{E_j}{\sum_k^n E_k} \quad (9)$$

2.3. TOPSIS Method

To rank the alternatives using the TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) method, the following procedure is implemented [29]:

Step 1: Construct the decision matrix (identical to Step 1 of the Entropy method).

Step 2: Determine the normalized values using formula (10):

$$n_{ij} = \frac{x_{ij}}{\sqrt{\sum_{i=1}^n x_{ij}^2}} \quad (10)$$

Step 3: Calculate the weighted normalized values using formula (11):

Step 4: Identify the Positive Ideal Solution (A^+) and the Negative Ideal Solution (A^-) for the criteria using formulas (12) and (13):

$$A^+ = \{y_1^+, y_2^+, \dots, y_j^+, \dots, y_n^+\} \quad (12)$$

$$A^- = \{y_1^-, y_2^-, \dots, y_j^-, \dots, y_n^-\} \quad (13)$$

Where y_{j+} và y_{j-} are the best and worst values of the weighted normalized value y_{ij} for criterion j , respectively.

Step 5: Determine the separation measures S_i^+ and S_i^- using formulas (14) and (15):

$$S_i^+ = \sqrt{\sum_{j=1}^n (y_{ij} - y_j^+)^2} \quad i = 1, 2, \dots, m \quad (14)$$

$$S_i^- = \sqrt{\sum_{j=1}^n (y_{ij} - y_j^-)^2} \quad i = 1, 2, \dots, m \quad (15)$$

Step 6: Calculate the closeness coefficient C_i^* using formula (16):

$$C_i = \frac{S_i^-}{S_i^+ + S_i^-} \quad i = 1, 2, \dots, m; 0 \leq C_i^* \leq 1 \quad (16)$$

Step 7: Rank the alternatives according to the principle that the alternative with the highest C_i value is the optimal choice.

3. Results and Discussion

Table 1 summarizes the data for 28 types of copper-core electrical wires provided by a supplier, designated from A1 to A28, with their corresponding product codes as shown in column 2 [30]. Each alternative is described by nine criteria, denoted from C1 to C9. Among these, C9 is a non-beneficial criterion (the smaller, the better), while the remaining eight criteria are beneficial criteria (the larger, the better).

C1: Nominal cross-sectional area (mm²)

C2: Number of strands

C3: Diameter of copper strands (mm)

C4: Insulation thickness (mm)

C5: Sheath thickness (mm)

C6: Overall diameter (mm)

C7: Maximum DC resistance of conductor at 20°C (Ohm/km)

C8: Mass (Weight) (kg/m)

C9: Price (VNĐT/m, VNĐT= Viet Nam dong thoursand)

Table 1: Specifications of copper-core electrical wires [30]

Alt.	CODE	C1	C2	C3	C4	C5	C6	C7	C8	C9
A1	20225103	1.00	20	0.18	0.6	0.8	5.4	39.00	0.0489	7.201
A2	20225106	1.50	30	0.18	0.6	0.8	6.3	26.00	0.0587	11.533
A3	20225107	2.00	40	0.18	0.6	0.8	6.6	19.50	0.0688	18.346
A4	20225108	2.00	32	0.20	0.6	0.8	6.6	19.50	0.0686	26.607
A5	20225110	3.00	48	0.20	0.7	0.8	7.6	13.20	0.0935	42.857
A6	20225111	3.00	30	0.25	0.7	0.8	7.6	13.30	0.0930	24.388
A7	20225114	5.00	50	0.25	0.8	1	9.3	7.98	0.1405	38.284
A8	20235103	1.50	20	0.18	0.6	0.8	6.2	39.00	0.0573	57.225
A9	20235106	2.25	30	0.18	0.6	0.8	6.7	26.00	0.0709	23.670
A10	20235107	3.00	40	0.18	0.6	0.8	7	19.50	0.0833	38.418
A11	20235108	3.00	32	0.20	0.6	0.8	7	19.50	0.0830	58.843
A12	20235110	4.50	48	0.20	0.7	0.9	8.3	13.30	0.1187	38.699
A13	20235111	4.50	30	0.25	0.7	0.9	8.3	13.30	0.1172	24.412
A14	20235114	7.50	50	0.25	0.8	1.1	10.1	7.98	0.1782	35.212
A15	20245103	2.00	20	0.18	0.6	0.8	6.7	39.00	0.0706	26.117
A16	20245106	3.00	30	0.18	0.6	0.8	7.2	26.00	0.0869	36.484
A17	20245107	4.00	40	0.18	0.6	0.9	7.9	19.50	0.1074	54.228
A18	20245108	4.00	32	0.20	0.6	0.9	7.9	19.50	0.1071	26.685
A19	20245110	6.00	48	0.20	0.7	1	9.3	13.30	0.1517	48.426
A20	20245111	6.00	30	0.25	0.7	1	9.3	13.30	0.1507	48.426
A21	20245114	10.00	50	0.25	0.8	1.1	10.9	7.98	0.2200	66.126
A22	20255103	2.50	20	0.18	0.6	0.9	7.7	39.00	0.0830	26.123
A23	20255106	3.75	30	0.18	0.6	0.9	8.2	26.00	0.1075	33.170
A24	20255107	5.00	40	0.18	0.6	0.9	8.9	19.50	0.1294	34.208
A25	20255108	5.00	32	0.20	0.6	0.9	8.9	19.50	0.1298	37.816
A26	20255110	7.50	48	0.20	0.7	1.1	9.7	13.30	0.1871	44.126
A27	20255111	7.50	30	0.25	0.7	1.1	9.7	13.30	0.1858	54.212
A28	20255114	12.50	50	0.25	0.8	1.2	11	13.30	0.2724	65.746

The objective is to identify the optimal electrical wire type from Table 1. However, an analysis of the data reveals that C1 is highest at A28; C2 reaches its maximum at A14, A21, and A28; C3 is highest at A13, A14, and A28; C4 is highest at A14 and A21; C5, C6, and C8 are all at their maximum at A28; C7 is highest at A22; while C9 is at its minimum at A1. This indicates that no single alternative excels across all criteria simultaneously. Instead, the goal is to identify an alternative where the collective set of criteria is considered "optimal." Consequently, solving a multi-objective optimization problem is essential. In this study, the TOPSIS method was employed to fulfill this task.

To implement the TOPSIS method for multi-objective optimization, determining the criteria weights is a critical prerequisite. By applying formulas (1) through (3), the weights for criteria C1 to C9 using the Entropy method were calculated as 0.1089, 0.0759, 0.1183, 0.1675, 0.1739, 0.1008, 0.0804, 0.0994, and 0.0749, respectively. Similarly, by applying formulas (4) through (9), the weights derived from the MEREC method were 0.2710, 0.1089, 0.0240, 0.0162, 0.0223, 0.0773, 0.1781, 0.1572, and 0.1450, respectively.

It is observed that the weight values for each criterion differ significantly between the two methods. This discrepancy is attributed to the fundamentally different underlying philosophies of the Entropy and MEREC approaches. Nevertheless, utilizing both methods provides an opportunity to identify the best electrical wire type through a more objective and robust selection process.

Using the criteria weights calculated by the Entropy and MEREC methods, formulas (10) through (16) were applied to determine the closeness coefficient C_i for each alternative. Based on these scores, the ranking of the alternatives was established, as summarized in Figure 1.

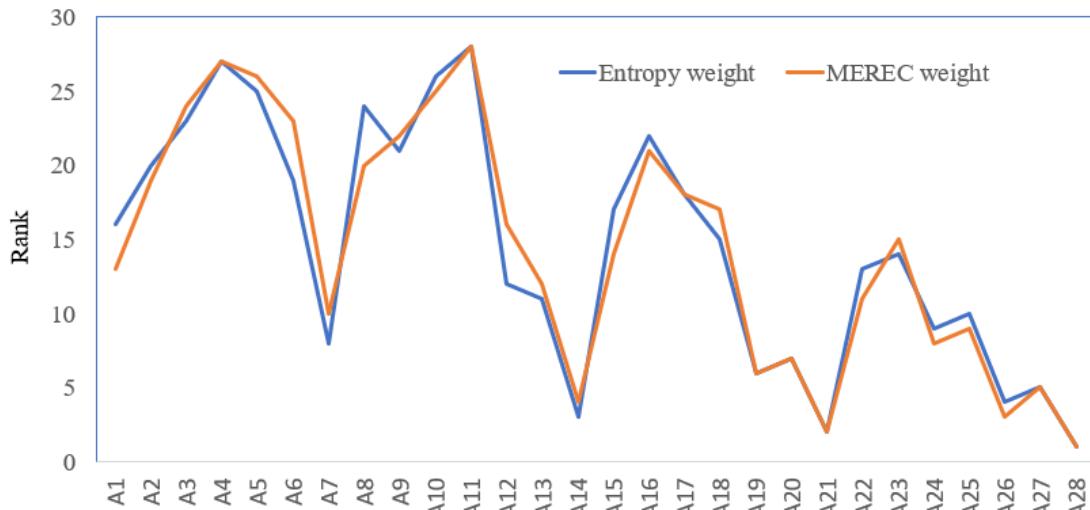


Figure 1: Rankings of electrical wire types

As observed in Figure 1, there are significant differences in the rankings of the alternatives when criteria weights are calculated using two different methods. This outcome is entirely expected, given the substantial disparities between the weight values derived from the Entropy and MEREC methods, as discussed previously. Nevertheless, certain alternatives demonstrate consistent rankings regardless of the weighting method applied. Specifically, A19 consistently ranks 6th, A20 ranks 7th, A21 ranks 2nd, A27 ranks 5th, and notably, A28 consistently holds the 1st position. Consequently, it can be concluded that A28 is the optimal alternative. In other words, the electrical wire with product code 20255114 is identified as the best performing type among the 28 evaluated options.

Conclusion

This study successfully integrated three methods—Entropy, MEREC, and TOPSIS—to solve a multi-objective optimization problem, specifically to identify the optimal electrical wire among 28 alternatives available from a supplier. The electrical wire with product code 20255114 was determined to be the best-performing option. This optimal wire is characterized by the following technical specifications:

- Nominal cross-sectional area: 12.50 mm²
- Number of strands: 50
- Strand diameter: 0.25 mm
- Insulation thickness: 0.8 mm
- Sheath thickness: 1.2 mm
- Overall diameter: 11 mm
- Maximum DC resistance at 20°C: 13.30 Ohm/km
- Mass per unit length: 0.2724 kg/m
- Unit price: 65.746 kVND/m

References

- [1]. X. Li, Z. Tang, C. Chen, L. Wang, Y. Zhang, D. Wang. (2005). An optimization method of grinding wheel profile for complex large shaft curve grinding, *Journal of Advanced Manufacturing Science and Technology*, 5(2), Art. no. 2025008.
- [2]. N.-T. Nguyen, D. D. Trung. (2021). Combination of taguchi method, MOORA and COPRAS techniques in multi-objective optimization of surface grinding process, *Journal of Applied Engineering Science*, 19(2) 390 – 398.
- [3]. D. D. Trung. (2021). A combination method for multi-criteria decision making problem in turning process, *Manufacturing review*, vol. 8, Art. no. 26.
- [4]. T. V. Dua, PSI-SAW and PSI-MARCOS Hybrid MCDM Methods, *Engineering, Technology & Applied Science Research*, 14(4) 15963-15968, 2024.

[5]. T. V. Dua, D. V. Duc, N. C. Bao, D. D. Trung, Integration of objective weighting methods for criteria and MCDM methods: application in material selection, *EUREKA: Physics and Engineering*, 2024(2), 131–148, 2024.

[6]. D. T. Do. (2024). Assessing the Impact of Criterion Weights on the Ranking of the Top Ten Universities in Vietnam, *Engineering, Technology & Applied Science Research*, 14(4), 14899-14903.

[7]. R. N. Wardany, Zahedi. (2024). A study comparative of PSI, PSI-TOPSIS, and PSI-MABAC methods in analyzing the financial performance of state-owned enterprises companies listed on the INDONESIA stock exchange, *Yugoslav Journal of Operations Research*.

[8]. D. D. Trung, B. Dudić, D. V. Duc, N. Hoai Son. (2024). Aleksandar Ašonja, Comparison of MCDM methods effectiveness in the selection of plastic injection molding machines, *Teknometriek*, 7(1), 1-19.

[9]. Y. Zhu, D. Tian, F. Yan. (2020). Effectiveness of Entropy Weight Method in Decision-Making, *Mathematical Problems in Engineering*.

[10]. M. Keshavarz-Ghorabae, M. Amiri, E. K. Zavadskas, Z. Turskis, J. Antucheviciene. (2021). Determination of Objective Weights Using a New Method Based on the Removal Effects of Criteria (MEREC), *Symmetry*, 13(525).

[11]. Z. Gligoric, M. Gligoric, I. Miljanovic, S. Lutovac, A. Milutinovic. (2023). Assessing Criteria Weights by the Symmetry Point of Criterion (Novel SPC Method)–Application in the Efciciency Evaluation of the Mineral Deposit Multi-Criteria Partitioning Algorithm, *Computer modeling in Engineering & Sciences*, 136(1), 955-979.

[12]. F. Ecer, D. Pamucar. (2022). A novel LOPCOW-DOBI multi-criteria sustainability performance assessment methodology: An application in developing country banking sector, *Omega*, 112, Art. no. 102690.

[13]. E. A. Adal, A. T. Isik. (2017). Critic and Maut Methods for the Contract Manufacturer Selection Problem, *European Journal of Multidisciplinary Studies*, 2(5), 88-96.

[14]. A. Ulutas, D. Karabasevic, G. Popovic, D. Stanujkic, P. T. Nguyen, C. Karakoy. (2020). Development of a Novel Integrated CCSD-ITARA-MARCOS Decision-Making Approach for Stackers Selection in a Logistics System, *Mathematics*, 8(1672).

[15]. D. D. Trung, H. X. Thinh. (2021). A multi-criteria decision-making in turning process using the MAIRCA, EAMR, MARCOS and TOPSIS methods: A comparative study, *Advances in Production Engineering & Management*, 16(4), 443–456.

[16]. D. D. Trung, B. Dudić, N.-T. Nguyen, A. Ašonja. (2024). Data Normalization for Root Assessment Methodology, *International Journal of Industrial Engineering and Management*, 15(2), 156 – 168.

[17]. S. Opricovic, T. Gwo-Hshiung. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS, *European Journal of Operational Research*, 156(2), 445-455.

[18]. Z. Stevic, E. Durmic, M. Gajic, D. Pamucar, A. Puska. (2019). A Novel Multi-Criteria Decision-Making Model: Interval Rough SAW Method for Sustainable Supplier Selection, *Information*, 10(292), 1-21.

[19]. D. D. Trun. (2021). The combination of TAGUCHI – ENTROPY – WASPAS - PIV methods for multi-criteria decision making when external cylindrical grinding OF 65G steel, *Journal of Machine Engineering*, 21(4), 90–105..

[20]. D. Siregar, H. Nurdyantoro, S. Sriadi, D. Suita, U. Khair, R. Rahim, D. Napitupulu. (2019). A. Fauzi, A. Hasibuan, M. Mesran, A. P. U. Siahaan, Multi-Attribute Decision Making with VIKOR Method for Any Purpose Decision, *IOP Conf. Series: Journal of Physics: Conf. Series*, 1019(012034), 1-7.

[21]. M. Yazdani, P. Zaraté, E. K. Zavadskas, Z. Turskis. (2019). A Combined Compromise Solution (CoCoSo) method for multi-criteria decision-making problems, *Management Decision*, Emerald, 57(9), 2501-2519.

[22]. L. Pérez-Domínguez, K. Y. Sánchez Mojica, L. C. O. Pabón, M. C. C. Díaz. (2018). Application of the MOORA method for the evaluation of the industrial maintenance system, *IOP Conf. Series: Journal of Physics: Conf. Series*, 1126 (012018), 1-6.

[23]. S. B. Patil, Tushar A. Patole, Rasika S. Jadhav, Shruti S. Suryawanshi, Sunil J. Raykar. (2022). Complex Proportional Assessment (COPRAS) based Multiple-Criteria Decision Making (MCDM) paradigm for hard turning process parameters, *Materialstoday: Proceedings*, 59(1), 835-840/

[24]. D. D. Trung. (2022). Expanding data normalization method to CODAS method for multi-criteria decision making, *Applied Engineering Letters*, 7(2), 54-66.

[25]. A. E. Torkayesh, M. Deveci, S. Karagoz, J. Antucheviciene. (2023). A state-of-the-art survey of evaluation based on distance from average solution (EDAS): Developments and applications, *Expert Systems with Applications*, 221(119724).

[26]. D. D. Trung. (2021). Application of TOPSIS and PIV methods for multi-criteria decision making in hard turning process, *Journal of Machine Engineering*, 21(4), 57–71.

- [27]. S. A. I. Hussain1and, U. K. Mandal. (2016). Entropy based MCDM approach for Selection of material, *National Level Conference on Engineering Problems and Application of mathematics*.
- [28]. A. Puška, D. Božanić, Z. Mastilo, D. Pamučar. (2023). A model based on MEREC-CRADIS objective decision-making methods and the application of double normalization: A case study of the selection of electric cars, *Research Square*, 1-19.
- [29]. D. D. Trung. (2021). Application of EDAS, MARCOS, TOPSIS, MOORA and PIV methods for multi-criteria decision making in milling process, *Strojnícky časopis – Journal of MECHANICAL ENGINEERING*, 71(2), 69 – 84.,.
- [30]. H. X. Thinh, D. V. Duc, N. C. Bao. (2024). The Effect of CoCoSo Method on the Ranks of Alternatives: A Case Study of Copper Electrical Wire Selection, *Engineering, Technology & Applied Science Research*, vol. 14, no. 6, pp. 18307-18315.