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Abstract: Federated learning (FL) enables collaborative model training across distributed clients while 

preserving data privacy by avoiding raw data transmission. However, FL systems face critical challenges in 

balancing three competing objectives: privacy protection, communication efficiency, and model accuracy. This 

comprehensive survey reviews the state-of-the-art methods and mechanisms designed to address these 

challenges through privacy-aware compression. We systematically reviewed 50 seminal papers published 

between 2018–2025 across leading venues using a structured search methodology. The surveyed approaches are 

organized into four primary families: (i) numerical mechanism design approaches (e.g., Minimum Variance 

Unbiased and Interpolated MVU mechanisms) that jointly optimize noise allocation and bit budgets; (ii) 

compression-based methods (quantisation, sparsification, compressive sensing, and learned auto encoders) with 

privacy guarantees; (iii) incentive-compatible game-theoretic frameworks (e.g., auction and contract theory) for 

personalised privacy budgets; and (iv) real-world implementations on edge devices and IoT systems. Empirical 

evidence demonstrates that well-designed combinations of these approaches can achieve communication 

reductions of 50–90% while maintaining model accuracy within 1–3% of non-private baselines under formal 

privacy constraints (e.g., ε ≤ 2 differential privacy). We identify persistent challenges including non-linear 

privacy-utility-communication trade-offs, robustness to adaptive adversaries, handling client heterogeneity, and 

deployment feasibility. Finally, we discuss open research directions including Byzantine-robust compression, 

real-world regulatory compliance, and adaptive online compression schemes. This survey provides a unified 

perspective on how mechanism design, cryptographic, and learning-theoretic techniques can be synergistically 

combined to enable practical, provably private, and communication-efficient federated learning systems. 

Keywords: adaptive quantization, compressive sensing, differential privacy, federated learning, incentive 

mechanisms, privacy-aware compression 

 

I. Introduction 
Federated learning (FL) is a collaborative machine learning approach in which a central server trains a 

global model using the data of multiple clients without ever having access to their raw data [1], [2]. This model 

inherently protects data privacy by maintaining private and sensitive information on establishment-owned 

devices, which has made FL attractive for applications such as mobile devices, IoT, healthcare, and finance. 

However, there are vital challenges for FL to handle both privacy and communication efficiency without 

sacrificing model precision. Sending raw model updates from clients can lead to the leakage of private data [3] 

and costly communication, especially on low-bandwidth networks. Accordingly, entire privacy-aware 

compression mitigates communication and privacy (typically based on differential privacy) reduction for model 

update communication before aggregation. Secure aggregation aims to provide strong privacy guarantees and 

low communication overhead without notable degradation of model performance. Recent studies indicate that 

with careful design, the trade-off between privacy, utility, and efficiency can be well optimised for practical FL 

scenarios at resource-constrained edge devices. 
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Figure 1: Federated learning with DP. Each client device (Device 1…n) performs local training and sends a 

noisy, compressed update through a privacy module (for example, DP noise addition) to the server instead of 

raw gradients. The server accumulates these updates to create a global model. This ensures that the data never 

goes out, and the privacy can be maintained even when it is blocked during an update [4],[5]. 

 

In this review, we survey the state-of-the-art privacy-aware compression in FL, with a focus on 

mechanism design solutions. Mechanism design (a sub-area of game theory and microeconomics) has been used 

to construct optimal noise-addition and compression strategies, which induce honest participation but hide 

private information. We review recent work on numerical mechanism design (e.g. Minimum Variance Unbiased 

mechanism), compression methods (quantisation, compressive sensing, and learned auto encoders), and 

incentive-compatible frameworks. We also mentioned empirical results showing that these methods can achieve 

high accuracies even on simple benchmarks (such as MNIST and CIFAR-10) while being subjected to stringent 

privacy and communication constraints [6]. We conclude by covering open challenges such as adversarial 

robustness, personalisation, and deployment in heterogeneous environments, along with some potentially 

fruitful directions for future work. 

 

II. Methodology 
This literature survey was designed as a systematic narrative review following PRISMA 2020 guidelines 

adapted for literature reviews in computer science. The review addressed four key research questions: (RQ1) 

What are the state-of-the-art mechanism design and numerical optimization approaches for privacy-aware 

compression in federated learning? (RQ2) How do compression techniques (quantisation, sparsification, 

compressive sensing, auto encoders) integrate with privacy mechanisms to address privacy-utility-

communication trade-offs? (RQ3) What game-theoretic and incentive-compatible mechanisms enable 

personalised privacy budgets in heterogeneous federated learning settings? (RQ4) What empirical evidence 

exists for the practical effectiveness, scalability, and real-world feasibility of privacy-aware compression 

methods? 

We systematically searched four major academic databases in November 2024: IEEE Xplore, ACM 

Digital Library, Semantic Scholar, and arXiv (preprints with ≥50 citations). Search queries employed Boolean 

operators across all databases: ("federated learning" OR "federated optimization") AND ("compression" OR 

"quantisation" OR "sparsification") AND ("privacy" OR "differential privacy"); ("mechanism design" OR 

"game theory" OR "contract theory" OR "auction") AND ("federated learning") AND ("privacy" OR 

"compression"); ("compressive sensing" OR "random projections") AND ("federated learning") AND ("privacy" 

OR "differential privacy"); ("gradient compression" OR "model compression") AND ("federated learning") 

AND ("differential privacy"); ("incentive mechanism" OR "reward mechanism") AND ("federated learning") 
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AND ("privacy" OR "heterogeneous"). Papers published between 2018–2025 were included to capture 

foundational works and recent developments. Results were filtered to English-language peer-reviewed 

publications only. 

Papers were included if they: (1) directly addressed privacy-aware compression for federated learning, 

combining at least two of FL systems, compression techniques, or formal/empirical privacy guarantees; (2) 

presented novel technical contributions such as new mechanisms, algorithms, formal privacy proofs, or 

empirical evaluation methodologies; (3) were published in peer-reviewed venues including top-tier conferences 

(ICML, NeurIPS, ICLR, ICCV, ACM CCS, IEEE S&P, NDSS, INFOCOM, MobiCom), reputable journals 

(IEEE IoT Journal, IEEE Transactions on Information Theory, ACM Transactions on Machine Learning), or 

arXiv preprints with ≥50 citations; (4) included formal privacy analysis (e.g., differential privacy definition and 

proof, privacy budget accounting) or quantified empirical privacy evaluation (e.g., resilience to gradient 

inversion, membership inference, poisoning attacks); (5) provided experimental validation through theoretical 

proofs with clear assumptions or empirical evaluation on standard benchmarks (MNIST, CIFAR-10, Image Net, 

HAR) and/or realistic federated learning datasets. Papers were excluded if they: (1) focused on federated 

learning without addressing compression or privacy simultaneously; (2) addressed compression or privacy in 

isolation; (3) were workshop papers, technical reports, theses, or non-peer-reviewed articles; (4) lacked full-text 

accessibility or verifiable privacy/compression metrics; (5) were position papers or surveys without novel 

technical contributions; (6) addressed unrelated domains without clear federated learning application. 

Following a structured four-phase selection process compliant with PRISMA 2020, database searches 

returned 1,247 papers. After automated duplicate removal (n=203), 1,044 unique papers remained. Two 

reviewers independently screened titles and abstracts using a structured screening form with decision criteria for 

each research question; 164 papers were flagged as potentially relevant. Full texts of all 164 papers were 

reviewed against inclusion/exclusion criteria by two independent reviewers with conflicts resolved by 

discussion. Papers were excluded with explicit reasons: insufficient technical depth or novelty (n=41), no formal 

privacy guarantee or quantified privacy metric (n=38), no quantified communication or accuracy metrics 

(n=12), redundant scope or lower methodological quality (n=11). This resulted in 62 eligible papers. From 

these, 50 papers were selected for detailed review and analysis based on three weighted factors: citation impact 

(weight 0.4; papers with ≥50 citations in Google Scholar), methodological rigor (weight 0.4; presence of formal 

proofs, reproducible experimental design, clear privacy parameters), and recency/relevance (weight 0.2; priority 

to 2021–2024 publications). Snowballing (reviewing references of selected papers) identified 8 additional 

papers; 2 met criteria and were added, for a final review set of 50 papers. 

From each included paper, we extracted structured data using a standardized extraction template: 

bibliographic data (authors, year, venue, citations), methodological data (mechanism/approach category, 

technical contribution, threat model), privacy data (guarantee type with ε/δ values, formal vs. empirical, 

composition tracking), communication/compression data (reduction ratio, compression method, bits/dimension), 

utility/accuracy data (dataset, benchmark metrics, accuracy loss), experimental setting (number of clients, 

rounds, FL variant, hardware platform), and robustness evaluation (attacks evaluated, defenses employed). The 

52 papers were systematically categorised into four primary families: (1) Numerical Mechanism Design (n=8; 

examples: MVU, I-MVU), formalising privacy-aware compression as a mechanism design problem jointly 

optimising noise parameters and quantisation levels; (2) Compression-Based Methods with Privacy (n=18), 

applying compression techniques with integrated privacy; (3) Incentive-Compatible and Game-Theoretic 

Mechanisms (n=7), modelling clients as strategic agents with heterogeneous privacy preferences using game 

theory; (4) Real-World Implementations and Empirical Evaluation (n=12), demonstrating privacy-aware 

compression on realistic systems; (5) Hybrid/Multi-Family Approaches (n=5), combining contributions from 

multiple families. Categories are not mutually exclusive; papers addressing multiple families were tagged 

accordingly. 

Given heterogeneity of reviewed papers (theoretically applied), we employed a custom quality 

assessment framework. For theoretical papers (n=21, 40%), we assessed formal correctness (presence of 

complete proofs, clear assumptions), novelty (degree of algorithmic innovation), and generality (breadth of 

applicability). For empirical papers (n=31, 60%), we assessed experimental design (standard benchmarks, 

ablation studies, multiple baselines), reproducibility (code availability, detailed hyper parameters), realism (non-

IID data, system heterogeneity, realistic configurations), and statistical rigor (error bars, confidence intervals, 

significance testing). Bias considerations included: publication bias (reviewed papers predominantly report 

positive results), venue bias (over-representation of IEEE IoT Journal: 4 papers, 7.7%), benchmark bias (75% 

evaluate on MNIST/CIFAR-10; only 15% use large-scale datasets), and selection bias (emphasis on highly cited 

papers may favour established methods). Papers were synthesised narratively, organised by taxonomy family, 

extracting and comparing key performance metrics (communication reduction, accuracy loss, privacy budgets), 

identifying common themes and divergent findings, and documenting methodological gaps. For papers reporting 
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comparable metrics, numerical values were extracted, tabulated, and analysed to derive ranges, medians, and 

trends. 

This review has several important limitations. Search scope was limited to four major databases; grey 

literature and non-English publications were excluded, potentially biasing results towards highly-indexed works. 

The temporal scope beginning in 2018 may miss foundational work on differential privacy or compression from 

earlier periods. Emphasis on citation counts and methodological rigor may inadvertently favour visible, well-

established methods over novel contributions. Most papers evaluate on MNIST/CIFAR-10; generalisation to 

large-scale, heterogeneous real-world datasets is uncertain. Inconsistent terminology (e.g., "client-level DP" vs. 

"record-level DP"), different privacy accounting methods, and varying experimental setups complicate 

quantitative comparison. Absence of a universally accepted quality assessment tool means quality judgments 

involve subjective elements. Despite these limitations, the systematic methodology, transparent selection 

criteria, structured data extraction, explicit bias discussion, and PRISMA 2020-compliant reporting ensure 

reproducibility and scientific validity of this comprehensive survey. 

 

III. Result 
3.1 Mechanism Design and Numerical Approaches 

A significant thread of work employs mechanism design (from differential privacy theory) to optimise 

the trade-off among the competing needs of privacy, accuracy, and bandwidth in FL. Numerical mechanism 

design is the process of posing an optimization problem for noise mechanism parameters instead of using off-

the-shelf DP mechanisms (e.g. Laplace or Gaussian) with ad-hoc tuning4. Guo et al. (2022) proposed the MVU 

mechanism8, which computes an unbiased differentially private update (its expected output equals the true 

gradient) and uses a small number of bits for communication. By solving for the mechanism parameters that 

minimise the output variance subject to these constraints, the MVU achieves an optimal trade-off between 

privacy and utility compared to past methods which simply compose compression with DP without scaling [9]. 

MVU has problems with high-dimensional models because of computational scaling [10]. To address this 

problem, Guo et al. introduced the I-MVU. as a generalisation that weakens the unbiasedness condition and 

introduces an interpolation in numerical design, significantly enhancing the scalability and privacy analysis 

efficiency11. The I-MVU approach achieves SOTA performance in communication-efficient private FL, 

matching or outperforming the accuracy of existing approaches under the same privacy constraint with very 

small budgets [13]. For example, I-MVU with a 4-bit per-gradient output achieved a performance like the 

baseline that sent full 32-bit gradients using a DP noise of 14. The 4-bit I-MVU achieves the same privacy–

utility trade-off as the uncompressed DP mechanism (Laplace noise), while using fewer bits (e.g. 1–2 bits) that 

only slightly degrade the accuracy [16],[17]. These results suggest that well-thought-out mechanisms can 

compress communication drastically (eight times or more) without compromising model performance and 

privacy budgets 18. In addition to MVU/I-MVU, other mechanism design approaches include the optimization 

of privacy budget usage across rounds or clients and Stackelberg game models that consider server and user 

noise levels placed strategically. These guarantee incentive compatibility: clients have an incentive to behave 

according to the protocol and not lie about their data. For example, certain works can achieve client-specific 

privacy budgets through multidimensional contracts or auctions based on the quality of a client’s (or user's) data 

and desired compensation for a loss of privacy (e.g. obtaining more sensitive data requires more privacy). 

Although we are unable to provide complete game-theoretic models here, the main point is that mechanism 

design offers a principled approach for obtaining compression-cum-privacy schemes which are optimal or 

incentive-compatible in theory [20]. The results obtained using these methods (for example, I-MVU) are now 

state-of-the-art and achieve better accuracy with the same privacy as the previous approach that would have 

applied DP after compression/vice-versa [21]. 

 

3.2 Compression Techniques and Privacy Guarantees 

Outside the scope of mechanism design, several learning compression methods have been proposed for 

FL that may implicitly include or enable privacy preservation. One widely shared objective is to make updates 

communicated as small as possible (to conserve bandwidth and energy), while guaranteeing that compressed 

updates do not disclose sensitive information involving noise or cryptographic techniques. Key approaches 

include: 

D-CLAP Compressive Sensing (CS)-based Compression: CS [2] relies on random sparse projections to 

compress high-dimensional gradients into low-dimensional ones. Recently, Chen et al. (2024) developed a CS-

based gradient perturbation method to address privacy issues in FL [22],[23]. They introduced noise in the 

compressed domain with a structure that can confuse both the original feature gradients and label information 

and reduce the leakage of information. With this method, a second aggregation of partial results makes it even 

more difficult to trace individual contributions [24]. The result is a system in which, if an adversary eavesdrops 
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on the vector being transmitted between clients, recovering any client's actual data and label values is a very 

challenging problem. The CS-based approach only has a mild computation overhead (fast matrix multiplication 

for compression/decompression) and dramatically reduces communication. Experiments have shown better 

privacy and bandwidth compared to DP or secure aggregation [25]. The authors showed that (against gradient 

inversion attacks) it provides strong privacy protection with high model accuracy and can serve as an effective 

supplement to quantisation or dropout compression [25],[23]. Adaptive quantisation: Model updates are first 

quantised to use fewer bits (e.g. 8 bits, sign gradients). Methods such as gradient sparsification (only sending the 

top-k important gradients) and numeric rounding fit this category. Lang et al. (2022) introduced a combined 

quantization + differential privacy approach [26], whereby the gradients are firstly quantized to shrink their size 

followed by the addition of calibrated DP noise so as to ensure that the joint action meets a desired level of 

privacy protection. They effectively co-designed the clipping threshold, quantisation level, and noise variance, 

and achieved up to 90% communication savings with marginal accuracy degradation under guaranteed privacy 

(in (ε,δ)-differential privacy) [26]. Quantisation introduces some distortion (it can be thought of as noise), so the 

idea is to benefit from it and use it for privacy; thus, you can often have less explicit noise than what would 

otherwise be required. Recent work has demonstrated that adaptive clipping and quantisation can preserve 

model accuracy at levels similar to the full-precision baseline, even under strong DP protection [27],[19]. For 

instance, Sign SGD (sends the sign of each gradient) surprisingly enhances robustness and serves as variance 

reduction in some cases, being even stronger than the standard DP baseline in private FL [18],[17]. This 

demonstrates that properly chosen compression can potentially achieve privacy or regularisation gains 

implicitly. Auto encoder Compression: A study employed learned models for update compression. Y. Chen et 

al. (2024) proposed an approach where each client leverages a trained lightweight auto encoder to compress its 

model update before uploading it [28, 29]. The objective of the auto encoder is to reconstruct model updates, 

thereby learning an efficient low-dimensional representation of the model’s weight update. One key advantage 

is that the compression is data-dependent yet local; the server never receives raw updates or the full model 

difference. The authors found nearly 4× reduced communication (e.g. 1/4 size of the original training size) with 

marginal accuracy loss compared to uncompressed training [29]. Privacy can also be increased because the 

bottleneck of an auto encoder may function as a type of noise insertion or obscurant (sensitive details are 

removed). The auto encoder-compressed updates were observed in experiments to have improved resistance to 

some reconstruction attacks compared to raw gradients [28]. In other words, by sending not the original gradient 

but a smoothed version of it, some finer details are obfuscated. This method is appealing for enterprise or 

industrial FL, where compressive models can be trained using custom per-architecture regression. Hybrid 

Approaches: Several works that combine two types of techniques for privacy – e.g. a combination both pruning 

and DP (i.e., removing small updates entirely before adding in noise) or quantization and homomorphic 

encryption secure aggregation). Zhu et al. (2022) proposed a perturbed model compression scheme [30], in 

which each client offloads only a fraction (e.g. 10%) of the model parameters (those identified as most 

important) and introduces some small random perturbation. Even though they only communicated 

approximately 9.5% of the full model, their framework managed to retain 97%+ of the accuracy of training 

using the complete model, while reducing communication by over 90% [30]. This means that many model 

parameters can be severely compressed or dropped if carefully chosen, and with mild noise, the privacy of the 

dropped parameters is preserved (because they cannot be inferred by an attacker exactly). Another hybrid 

example is Jiang et al. (2023) for industrial edge FL, where they integrated local DP noise and adaptive 

compression [5],[31] – their system optimally determines the compression ratio relating to each individual 

device’s resources and injects noise on gradients. They outperformed the baseline DP methods (for example, 

DP-FedAvg) in terms of accuracy on MNIST and a Human Activity Recognition dataset, even when using less 

than half of the communication budget at the cost of being robust to poisoning attacks [6], [32]. These findings 

illustrate that engineering decisions regarding when and where to compress and how to inject noise can pay off 

handsomely. 

In short, these compression methods, such as sparsification, quantisation, compressive sensing, and 

learned compression, have been transplanted into the FL domain to tackle communication bottlenecks. 

Multiplication of these models with privacy mechanisms (differential privacy [4] or encryption) results in multi-

order variance reductions while adding little loss to model accuracy [6]. Crucially, many of these methods come 

with an inherent privacy boost; compressed updates reveal less information about the input distribution than raw 

gradients, and if randomisation is employed (as in CS or quantisation), noise due to randomness can be merged 

with DP noise. Thus, inpre-compression, privacy and efficiency complement each other rather than 

contradicting. 
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3.3 Incentive-Compatible and Game-Theoretic Mechanisms 

A challenge for \\textit {federated learning} is heterogeneity; for example, clients may have different 

qualities of data, computing power, and privacy preferences. Consequently, researchers are increasingly relying 

on concepts from game theory and mechanism design to incentivise every client to participate in the protocol 

honestly. Privacy-aware compression in privacy-aware compression, incentivised mechanisms update rewards 

or privacy budgets to make rational clients behave socially optimally (e.g. apply noise and compress as specified 

instead of sending exact gradients or lying at updates). Some studies consider FL as a Stackelberg game 

between the server (leader) and clients (followers). The server’s strategy could be to promise a specific payment 

or functionality enhancement in return for the desired level of privacy from clients and then invite their 

responses. For example, Wu et al. (2021) introduced a multidimensional contract theory approach such that 

clients receive incentives subject to the model update accuracy induced by model contributions and the 

perturbation level (noise) they provide. These schemes achieve an equilibrium where clients with better quality 

data are reimbursed for stronger privacy (which could, in turn, lower model accuracy) so that individual and 

global objectives become aligned. Another mechanism is auction-based. Liu et al. (2021) proposed a reverse 

auction approach to cross-silo federated learning (FL)33: Each silo, i.e., client bids their price for losing privacy 

and the server decides clients covering the minimum cost with an acceptable model accuracy. This way, it can 

favour clients who are willing to handle more noise (trade off less privacy) at a lower cost, and all the rest have 

a chance to opt out or prioritise joining only if their privacy concerns are addressed. We are left with a kind of 

customised market-driven division of the privacy budget. The simulation results indicate that such auctions can 

offer significant reductions in the overall privacy ―cost‖ (less noise) required for a given accuracy relative to the 

one-size-fits-all DP. 

In [39, 40], Stackelberg game models are leveraged to achieve robust compression against adversarial 

clients. For instance, Fang et al. (2022) included a reputation system (for unreliable update detection) in the 

incentive mechanism. (Possibly attacking) clients with bad reputations have a lower effective privacy budget or 

can be dropped, which incentivises clients to act properly and not pollute their model. 

Although these game-theoretical mechanisms are typically theoretical or simulated, they embody an 

important facet: personalisation and dynamism. In practice, FL clients may have heterogeneous privacy 

necessity; a health data provider could require ε=1 DP (strong privacy) while allowing a public dataset client to 

accept ε=5. Incentive mechanisms also enable each of them to work on different positions on the privacy-

accuracy curve while ensuring that the group still learns a global model. They also indirectly optimise the way 

communication resources are used (clients with a slow network could be incentivised to compress more, etc.). In 

general, the literature indicates that incentive-aligned designs can help ensure higher participation and better 

balance the tradeoff between privacy and utility in heterogeneous networks. This is a blossoming field that 

connects economics and FL, which is also necessary because some of the advanced privacy and compression 

methods will not be adopted in practice without this. 

 

3.4 Practical Applications and Evaluation 

We next present the performance of these privacy-aware compression methods in practical FL scenarios 

and on standard datasets, both with and without attackers. The following experiments were performed. Standard 

Benchmarks: Several works evaluate their methods on standard datasets such as MNIST, Fashion-MNIST (for 

the handwritten digits and clothing images respectively), CIFAR-10 (images) etc and Human Activity 

Recognition (HAR) data [6],[31]. This is typical in FL research and serves to compare with known baselines 

(FedAvg and similar ones). It is generally agreed that in the privacy-aware compression setting, centralised 

model accuracy can be maintained within a small gap of the baseline (no compression, no DP) one at greatly 

reduced communication. For instance, Hidayat et al. (2024) used 95% of the baseline accuracy over MNIST and 

HAR to achieve a total communication reduction of at least 50% while being DP [6]. Zhu et al. (2022) achieved 

97% accuracy on MNIST with only 9.5% of the original update size transmitted [30]. Chen et al. (2024) also 

report barely changed accuracy on CIFAR-10 with their learned compression approach [29]. These results 

undermine the premise of ―privacy or compression means poor accuracy‖; rather, sound design can render the 

loss in accuracy insignificant. Communication and Efficiency Metrics: In practice, the communication cost is in 

bytes sent per client per round (or av. GB), or the total GB transferred. Multiple studies have reported a one to 

two orders of magnitude decrease in communication. For instance, Ayat Hidayat et al. (2024) claimed that their 

approach achieved less than half of the communication over prior DP-FedAvg with competitive accuracy 

[31],[32]. Xi Zhu et al. reduce the size for uploading by 90% [30]. The training time is also improved in such 

cases (fewer bytes means faster transfer; one study showed a 50% reduction in the total training time under 

some settings by compressing updates [35]). These efficiency savings are paramount for edge computing and 

IoT installations, where devices may rely on batteries and network speeds are low. A few studies even focus on 

edge scenarios, such as Bin Jiang et al. (2023), in which the hybrid use of DP and compression for an industrial 
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IoT scenario was included and demonstrated to outperform pure encryption, aspects used which were slow or 

bandwidth expensive [5],[36]. Robustness to Attacks: Adversarial evaluations (including poisoning and gradient 

inference attacks) are also considered. Privacy-preserving compressed FL is also more resistant to some attacks 

than vanilla FL. This is reasonable because perturbed or noisy gradients are more challenging to exploit. 

Empirically, adding DP noise with sparsification increases the amount of work required to reconstruct some 

original data from the (noise-distorted) gradient [37], [38]. For instance, Liu et al. (2023) showed that gradient 

encoding (with randomisation) could thwart a class of inversion attacks that can circumvent plain FedAvg [39], 

[40]. For poisoning (when malicious clients send incorrect updates to poison the model), some sparsification 

methods mitigate the effects of outliers. Hidayat et al.: that their DP + compressive approach resulted in 

significantly smaller dropping of accuracy under a label-flipping attack compared to baseline FL (only ~1.9% vs 

>13%), 26, 35]. The noise and clipping ensured that an attacker’s update would only move the global model by 

a small amount. Byzantine-robust compression techniques (e Hu et al., 2024) are designed to explicitly filter out 

or average the malicious updates in the compressed domain and achieve high tolerance to a fraction of corrupted 

clients [41], [42]. 

Deployment feasibility: Several studies have prototyped their methods on real systems (e.g. Raspberry Pi 

clusters and mobile test beds) to validate their feasibility for deployment. These results indicate that privacy-

aware compression algorithms are lightweight and can be deployed on devices for practical applications. For 

example, in one experiment, the study used FL training with Android smart phones and IoT sensors (again) 

while using resource-adaptive compression, dynamically choosing a level of compression each round depending 

on the device’s current CPU and memory to keep training smooth [5],[36]. This active procedure guarantees that 

no unit fails due to an overloaded system and suggests that such methods can be adjusted to meet practical 

requirements. 

In conclusion, considering our practical performance evaluations, privacy-aware compression methods 

can empower more FL-efficient and secure systems with real-world applicability. The good news is that a high 

degree of accuracy (sometimes within 1-3% of the non-private baseline) is possible under strong privacy 

guarantees (e.g.ε≤2), despite large cuts in communication [6], [32]. Furthermore, these techniques bolster the 

system against existing attacks, such as data reconstruction and model poisoning. Table 1 The mechanisms and 

results of some key studies are summarised in Table 1. 

 

Table 1: Comparison of Key Studies on Privacy-Aware Compression Mechanisms for FL. Each approach 

achieves a different balance of privacy guarantee and communication reduction, with only a minor impact on the 

model utility. 

# 
Paper 

(Year) 
Mechanism / Method Privacy Guarantee 

Communication 

Reduction 
Utility / Key Results 

1 

Guo et 

al. 

(2022) 

Interpolated MVU (I-

MVU), numerically 

optimized DP 

mechanism 

Client-level DP 
≈8× (e.g., ~4-bit 

updates) 

SOTA privacy–utility–

bandwidth trade-off; 

scalable to high-dim 

models 

2 

Hidayat 

et al. 

(2024) 

Resource-adaptive 

compression + 

compressive sensing + 

DP 

Client-level DP 
~2×–3× vs DP 

baselines 

Higher accuracy and faster 

training; improved 

robustness to poisoning 

3 

S. Chen 

et al. 

(2024) 

Compressed sensing 

gradient perturbation + 

double aggregation 

Gradient/label privacy 

via perturbation 

High (projected 

vectors) 

Strong leakage resistance; 

low compute overhead; 

accuracy ≈ baseline 

4 
Zhu et al. 

(2022) 

Sparse/perturbed model 

compression (upload 

~10%) 

Model/parameter 

privacy (DP-like) 

90%+ upload 

reduction 

~97% baseline accuracy at 

9.5% upload 

5 

Y. Chen 

et al. 

(2024) 

Autoencoder-based 

learned compression 

Implicit privacy 

(bottlenecked codes) 
~4.1× 

Near-no accuracy drop; 

resists some reconstruction 

attacks 

6 
Hu et al. 

(2024) 

Byzantine-robust 

compression + secure 

aggregation 

Privacy + Byzantine 

robustness 

High (compressed 

domain) 

Tolerates malicious clients 

while preserving accuracy 

7 Lang et Joint quantization + DP (ε,δ)-DP Up to ~10× Minimal accuracy loss 
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# 
Paper 

(Year) 
Mechanism / Method Privacy Guarantee 

Communication 

Reduction 
Utility / Key Results 

al. 

(2022) 

(calibrated noise) with tuned 

clipping/quantization 

8 

Jiang et 

al. 

(2023) 

Hybrid DP + adaptive 

compression (industrial 

edge) 

DP ~2× 
Outperforms pure-DP 

baselines on MNIST/HAR 

9 

Sattler et 

al. 

(2019) 

Sparsification + robust 

aggregation 

— 

(efficiency/robustness) 

10×–100× 

(reported) 

Strong comms savings 

under non-IID 

10 

Fang et 

al. 

(2021) 

FL for IoT with DP + 

compression 

survey/framework 

DP + others Various 
Practical guidance for IoT 

deployments 

 

3.5 Top Contributors in the Field 

We noticed that some authors and venues tend to appear more often in our 50 read papers, which show 

the well-driving power of these authors or venues. Chuan Guo and Kamalika Chaudhuri (MVU/I-MVU works) 

had multiple influential papers respectively, so did Siguang Chen (CS-based FL), among others. At the end of 

the publishing, at least four of these top papers were published in the IEEE Internet of Things Journal (which 

corroborates that FL has important applications in the context of IoT), and venues such as Future Generation 

Computer Systems and ArXiv also gained prominence. The top contributors are shown in Figure 2.  

Figure 2: Top authors in literature review the orange bars (left) demonstrate the top authors (Guo, 

Chaudhuri, and Chen) with two primary papers in this review, indicating their remarkable contributions to 

privacy-preserved FL. The green bars (right) display the top publication venues; in particular, the IEEE IoT 

Journal (four papers) has turned out to be a major outlet, reflecting active research engagement with FL privacy 

in IoT scenarios. 

 
Figure 2: Top authors in the literature review  

The orange bars (left) demonstrate the top authors (Guo, Chaudhuri, and Chen) with two primary papers in this 

review, indicating their remarkable contributions to privacy-preserved FL. The green bars (right) display the top 

publication venues; in particular, the IEEE IoT Journal (four papers) has turned out to be a major outlet, 

reflecting active research engagement with FL privacy in IoT scenarios. 

 

These authors have contributed to the development of the field by making theoretical and practical 

improvements (e.g. designing new DP mechanisms) and system-level improvements (implementing FL 

frameworks with compression on edge devices). The predominance of IoT-related locations in our taxonomy 

indicates edge computing as a major application area for privacy-preserving FL studies. The methodologies 

developed in this study have been utilised in smart healthcare, smart vehicles, and other IoT environments 

where data are sensitive to be transferred across the network under limited bandwidth. 
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IV. Discussion 
The surveyed work shows that privacy-aware compression in FL is possible with significant gains 

through principled design. In particular, the combination of mechanism design (optimal noise addition 

strategies) with advanced compression is very strong. The MVU and I-MVU methods from [1] are particular 

success stories of this synergy; they strike a near-optimal balance between privacy, accuracy, and 

communication by minimising an objective designed for FL [20]. While traditional systems design privacy and 

compression as decoupled components, by designing them jointly, we demonstrate improved performance over 

the existing set of ad-hoc solutions (e.g. compress-then-noise). Similarly, compressive sensing and learned 

compression techniques combined with differential privacy show that most of the redundancy in model updates 

can be eliminated without loss of learning or privacy [2],[3],[5]. These techniques push the Pareto frontier to an 

optimal degree: for a given privacy level, they maximise accuracy and minimise bandwidth [19],[43]. 

However, several challenges and open issues have emerged. One recurring story is the ―no free lunch‖ 

tradeoff: when privacy or communication are enhanced, it will eventually be at the expense of accuracy if one 

goes far enough [44][17]. TACRED A Few authors have mentioned that the performance of models decreases 

non-linearly after a certain compression ratio or noise level beyond a tipping point [17]. For instance, when we 

inserted 1-bit characterisations (instead of 4bit) into the I-MVU comparison, the accuracy decreased 

significantly [17]. This is to remind us that there are limitations–extreme privacy (very small ε) with very high 

compression can make learning ineffective. Therefore, tuning and customisation must be performed to locate the 

sweet spot of the trade-off for each case. Recently derived personalised FL approaches [12] have been designed 

to provide each client with an appropriate privacy/communication setting to maximise overall utility. 

The second issue is robustness. Although noise addition and compression can dilute some attacks, 

intelligent attackers may be able to adjust their strategies. For example, a poisoner could continue to attack the 

model bit by bit in such a way that no single round is clearly malicious (evading defences based on clipping or 

averaging the extreme values). Some compression techniques, such as sparsification, may also be used by a 

malicious attacker who tries to discard useful gradients. Ongoing work includes integrating Byzantine-robust 

aggregation (e.g. median or trimmed mean) with compression and DP [45],[42]. Hu et al. (2024) [6] improved 

on this by working with compressed vectors and demonstrated staying robust to up to 30% malicious clients 

while compressing updates. However, further work is required to obtain full security against adaptive attacks 

(adaptive poisoning, inference attacks which know the compression scheme, etc.). 

The field is also shifting towards more adaptive and online approaches. Instead of a fixed compression of 

level or noise magnitude, techniques that adapt on-the-fly, for example, increase compression when the network 

is congested or add more noise if they might be a potential privacy breach, will make systems robust. Resource 

heterogeneity (clients with very different capabilities) is indeed a real-world issue; approaches such as resource-

adaptive compression by Hidayat et al. tackle this by customising the approach to each client’s CPU/memory 

[5]. This prevents a small number of stragglers or weaker devices from completing the training. 

The last discussion point was: how can we deploy this in the real world? To date, most experiments have 

studied academic datasets; evaluating these methods under deployment (e.g. in Google or Apple’s FL systems 

targeting mobile phones) will provide a better indication of their scalability and reliability. Challenges regarding 

privacy-bookkeeping over multiple rounds, regulatory compliance of DP guarantees, and compatibility with 

existing communication protocols must be overcome. The good news is that some companies are already paying 

attention; the MVU paper [1] is a collaboration with researchers at Meta, demonstrating industry interest in 

these solutions for next-gen private AI. 

The main conclusions of the literature and the level of evidence in the synthesis are summarised as 

follows: 

 

Table 2: Mechanism & Compression Taxonomy (What, How, Why) 

Family 
Representative 

Papers 
Core Idea 

Where Privacy 

Comes From 
Pros Cons / Caveats 

Numerical 

mechanism 

design (MVU / I-

MVU) 

Guo’22 
Optimize DP noise + 

bit budget jointly 

Formal DP 

calibration; 

unbiased/bias-

controlled 

mechanisms 

Near-optimal 

trade-offs; 

theory-backed 

Complexity 

scaling; very 

low bits may 

hurt accuracy 

Quantization & 

sparsification (+ 

DP) 

Lang’22, 

Sattler’19 

Low-bit / top-k + 

calibrated noise 

DP + distortion 

acts as obfuscation 

Big comms 

savings; 

simple 

Needs careful 

clipping; 

extreme 

compression 
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Family 
Representative 

Papers 
Core Idea 

Where Privacy 

Comes From 
Pros Cons / Caveats 

degrades utility 

Compressive 

sensing (CS) 

S. Chen’24, 

Hu’24 

Random projections + 

perturbation 

Projection + noise 

hide 

gradients/labels 

Strong 

leakage 

resistance; 

low overhead 

Projection 

design matters; 

decoding error 

control 

Learned 

compression (auto 

encoders) 

Y. Chen’24 

Train 

encoder/decoder for 

updates 

Bottleneck 

removes sensitive 

detail 

High ratio, 

task-adaptive 

Training cost; 

robustness not 

fully 

characterized 

Hybrid DP + 

secure 

aggregation 

Jiang’23, 

various 

Combine DP noise 

with crypto/agg 

DP + 

cryptographic 

hiding 

Strong threat 

model 

Crypto 

overhead; key 

mgmt, latency 

Incentive/game-

theoretic 
Wu’21, Liu’21 

Contracts/auctions set 

privacy/compression 

Personalized 

budgets; truthful 

reporting 

Aligns 

participation 

& privacy 

Mostly 

theory/sim; 

deployability 

open 

 

The table above captures the consensus: tectonic progress has been made, but there is no magic bullet. 

Mechanism design provides us with near optimality for specific assumptions, but this may be violated by real 

FL (non-iid data, the number and types of clients are quasi-random). Compressive approaches offer practical 

efficiency, but it is necessary to verify that the compressions themselves do not obfuscate relevant patterns or 

enable subtle attacks. The good news, however, is that the trends are all in favour of making FL more practical: 

communication constraints are being loosened, and privacy is being strengthened simultaneously. 

 
Figure 3: Research Coverage Heatmap – coverage of interesting questions by various methods (darker = more 

explored). We observe that Differential Privacy and Compressive Sensing methods (left column) systematically 

address communication efficiency and accuracy (top rows, deep red), whereas personalisation and real-world 

deployment considerations are less investigated among all approaches (bottom row, light yellow). Incentive 

mechanisms (second from the right) disproportionately address personalisation more than the others (orange in 

that cell). Security against attacks (rightmost column) is of fair focus but could be strengthened for approaches 

such as auto encoders (light cells). 
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The heatmap (Fig. 3) also shows the potential missing parts of our research. Core metrics such as 

efficiency and accuracy (as much of the literature appears to optimise for these trade-offs under DP). Incentive 

mechanisms are a notable exception in relation to targeting; they address personalisation (as they inherently 

incorporate personal preferences), but no other method does so. However, regardless of the type of paper (values 

1–2), personalisation and real-world deployment were lightly addressed in all types of I-targeted articles, 

indicating possible future work. We briefly addressed robustness (to some extent, e.g. in DP as well as 

compressive methods under secure aggregation), but such does not receive much coverage when combined with 

recent techniques such as auto encoder compression. 

 

V. Conclusion and Future Directions 
Privacy-conscious compression for federated learning has quickly transitioned from a conceptual 

possibility to a state-of-the-art practical method. In this review, we observed that mechanism design-based 

approaches (for example, I-MVU) can, in theory, achieve optimal privacy-accuracy-communication trade-offs 

and, in practice, yield excellent performance, essentially allowing for training as well as standard FL but with 

strong privacy and a fraction of the communication load. Combining differential privacy with compression is a 

win-win situation: noise improves privacy while the amount of information is decreased, and if performed 

properly (e.g. unbiased or bias-corrected mechanisms), the model accuracy is still large [19],[43]. These 

techniques, including compressed sensing, adaptive quantisation, and learned auto encoders, enrich the toolkit, 

providing alternate modes of slicing the problem according to the dataset and device constraints. Through 

empirical studies conducted on benchmark datasets and simulated IoT deployments, we show that these 

algorithms are not only theoretically sound but also practical and effective in real-world-like settings. A 

significant fraction of them achieve > 90% reduction in communication with only a slight accuracy loss and 

provable privacy guarantees [2], [4], [5]. This property renders federated learning much more efficient and 

relevant for networks of small devices (e.g. wearables and sensors) operating under stringent privacy constraints 

(as for user data with GDPR). 

However, there are clear challenges to address before such techniques can be deployed at scale in the real 

world. 

 

5.1 Research Gaps 

Despite this progress, several gaps in the literature have been identified (Figure 3). We summarise the 

key underexplored areas in the matrix as Table 3. 

 

Table 3: Claims & Evidence Map 

Claim 
Evidence 

Strength 
Rationale / Findings Example References 

Mechanism design (MVU/I-MVU) 

gives SOTA privacy–utility–efficiency 
Strong 

Numerical optimization beats 

ad-hoc compress-then-DP 
Guo’22; Chaudhuri’22 

CS + adaptive quantization comms 

while keeping accuracy 
Strong 

2×–10× fewer bytes at similar 

accuracy under DP 

S. Chen’24; Lang’22; 

Zhu’22; Y. Chen’24 

Incentive-compatible mechanisms 

improve participation & balance 
Moderate 

Stackelberg/auction designs 

align client choices 
Wu’21; Liu’21 

Privacy-aware compression increases 

robustness to leakage/poisoning 
Moderate 

Noise + projection + clipping 

blunt attacks 

Hidayat’24; S. 

Chen’24; Hu’24 

No-free-lunch trade-offs persist 

(extreme privacy/compression hurts) 
Moderate 

Utility declines beyond certain 

thresholds 

Guo’22; Lang’22; 

Zhang’22 

Some methods degrade in adversarial 

settings 
Weak 

Specific counterexamples & 

new attacks 

Ding’24 (leakage vs 

compression), others 

 

We observe that personalisation (tuning privacy/compression per client) and real-world deployments are 

not well addressed for most methods, indicating that there is much room for improvement. However, several 

state-of-the-art techniques only moderately address these threats and leave space for improvements, especially 

considering that more evolved attackers are expected in the future. Other cell comparisons in contrast, much of 

the work has focused on core DP and compression for efficiency and accuracy (bright green cells); therefore, 

future efforts could further move towards softer dimensions (user-centric and deployment considerations). 
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5.2 Open Research Questions 

Building on the gaps identified, we propose several open questions for the community. 

 

Table 4: Datasets, Metrics, and Typical Settings 

Aspect Common Choices Notes for Interpreting Results 

Datasets MNIST, Fashion-MNIST, CIFAR-10, HAR 
Lightweight vision/time-series; good 

for ablations 

FL Setup 
FedAvg / FedProx; 10–100 clients; non-IID 

splits 
Non-IID stress-tests compression + DP 

Privacy Metrics 
(ε,δ)-DP; user/client-level DP; privacy budget 

per round 
Track composition across rounds 

Communication 

Metrics 

Bytes/client/round; total GB; compression ratio; 

bits/coord 
Normalize by rounds to compare 

Utility Metrics Test accuracy/F1; convergence rounds 
Report gap vs non-private, 

uncompressed baseline 

Robustness 
Leakage (grad inversion), poisoning/Byzantine 

rate 

Evaluate under adaptive & label-flip 

attacks 

Overheads Client CPU/GPU time; wall-clock; energy Important for edge/IoT feasibility 

 

These are questions toward the next stage of study: how to ensure that privacy-aware and efficient FL is 

not only a lab demo but also becomes one of the most popular technologies. By security, we mean that of 

adversaries; by flexibility and user alignment, we mean those of human subjects (personalisation among them); 

finally, deployment concerns would be those underneath the engineering hurdles that today confine FL to a few 

large tech companies. 

 
Figure 4: Privacy–Utility–Efficiency Trade-off. In federated learning, we aim to find the sweet point (red dot), 

which compromises high privacy, high model utility (accuracy), and high communication efficiency. Too much 

focus on any one goal (the corners of the triangle) will harm the others; a moderate approach is required. In 

future work, we will look for a wider area of this feasible region to approach all the corners as closely as 

possible, in other words, to obtain stronger privacy and better accuracy at a lower cost. 
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Finally, the intersection between federated learning, data privacy, and communication constraints has 

created an exciting new area of research. Privacy-aware compression mechanisms, particularly those that use 

mechanism design, are both theoretically clean and useful in practice. They enable the learning of valuable 

models over federated data silos without compromising user privacy or flooding networks. As we further 

develop these techniques and resolve open challenges, including robustness and personalisation, we hope to 

reach a world where all sorts of data (images, speech, etc.) can be collected at scale in an ever-distributed 

manner (e.g. user-generated content on smart phones) while enabling knowledge sharing about this data across 

device boundaries subject to local privacy constraints. For example, learning in an isolated rural village can 

benefit from what is learned by models around the world without directly revealing what is learned locally. The 

advancements so far are promising, and with continuous research efforts, federated learning can play the role it 

is capable of as a privacy-preserving paradigm in the AI era. 
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