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Abstract: Federated learning (FL) enables collaborative model training across distributed clients while
preserving data privacy by avoiding raw data transmission. However, FL systems face critical challenges in
balancing three competing objectives: privacy protection, communication efficiency, and model accuracy. This
comprehensive survey reviews the state-of-the-art methods and mechanisms designed to address these
challenges through privacy-aware compression. We systematically reviewed 50 seminal papers published
between 2018-2025 across leading venues using a structured search methodology. The surveyed approaches are
organized into four primary families: (i) numerical mechanism design approaches (e.g., Minimum Variance
Unbiased and Interpolated MVU mechanisms) that jointly optimize noise allocation and bit budgets; (ii)
compression-based methods (quantisation, sparsification, compressive sensing, and learned auto encoders) with
privacy guarantees; (iii) incentive-compatible game-theoretic frameworks (e.g., auction and contract theory) for
personalised privacy budgets; and (iv) real-world implementations on edge devices and 10T systems. Empirical
evidence demonstrates that well-designed combinations of these approaches can achieve communication
reductions of 50-90% while maintaining model accuracy within 1-3% of non-private baselines under formal
privacy constraints (e.g., € < 2 differential privacy). We identify persistent challenges including non-linear
privacy-utility-communication trade-offs, robustness to adaptive adversaries, handling client heterogeneity, and
deployment feasibility. Finally, we discuss open research directions including Byzantine-robust compression,
real-world regulatory compliance, and adaptive online compression schemes. This survey provides a unified
perspective on how mechanism design, cryptographic, and learning-theoretic techniques can be synergistically
combined to enable practical, provably private, and communication-efficient federated learning systems.
Keywords: adaptive quantization, compressive sensing, differential privacy, federated learning, incentive
mechanisms, privacy-aware compression

I. Introduction

Federated learning (FL) is a collaborative machine learning approach in which a central server trains a
global model using the data of multiple clients without ever having access to their raw data [1], [2]. This model
inherently protects data privacy by maintaining private and sensitive information on establishment-owned
devices, which has made FL attractive for applications such as mobile devices, 10T, healthcare, and finance.
However, there are vital challenges for FL to handle both privacy and communication efficiency without
sacrificing model precision. Sending raw model updates from clients can lead to the leakage of private data [3]
and costly communication, especially on low-bandwidth networks. Accordingly, entire privacy-aware
compression mitigates communication and privacy (typically based on differential privacy) reduction for model
update communication before aggregation. Secure aggregation aims to provide strong privacy guarantees and
low communication overhead without notable degradation of model performance. Recent studies indicate that
with careful design, the trade-off between privacy, utility, and efficiency can be well optimised for practical FL
scenarios at resource-constrained edge devices.
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Figure 1: Federated learning with DP. Each client device (Device 1...n) performs local training and sends a
noisy, compressed update through a privacy module (for example, DP noise addition) to the server instead of
raw gradients. The server accumulates these updates to create a global model. This ensures that the data never

goes out, and the privacy can be maintained even when it is blocked during an update [4],[5].

In this review, we survey the state-of-the-art privacy-aware compression in FL, with a focus on
mechanism design solutions. Mechanism design (a sub-area of game theory and microeconomics) has been used
to construct optimal noise-addition and compression strategies, which induce honest participation but hide
private information. We review recent work on numerical mechanism design (e.g. Minimum Variance Unbiased
mechanism), compression methods (quantisation, compressive sensing, and learned auto encoders), and
incentive-compatible frameworks. We also mentioned empirical results showing that these methods can achieve
high accuracies even on simple benchmarks (such as MNIST and CIFAR-10) while being subjected to stringent
privacy and communication constraints [6]. We conclude by covering open challenges such as adversarial
robustness, personalisation, and deployment in heterogeneous environments, along with some potentially
fruitful directions for future work.

I1. Methodology

This literature survey was designed as a systematic narrative review following PRISMA 2020 guidelines
adapted for literature reviews in computer science. The review addressed four key research questions: (RQ1)
What are the state-of-the-art mechanism design and numerical optimization approaches for privacy-aware
compression in federated learning? (RQ2) How do compression techniques (quantisation, sparsification,
compressive sensing, auto encoders) integrate with privacy mechanisms to address privacy-utility-
communication trade-offs? (RQ3) What game-theoretic and incentive-compatible mechanisms enable
personalised privacy budgets in heterogeneous federated learning settings? (RQ4) What empirical evidence
exists for the practical effectiveness, scalability, and real-world feasibility of privacy-aware compression
methods?

We systematically searched four major academic databases in November 2024: IEEE Xplore, ACM
Digital Library, Semantic Scholar, and arXiv (preprints with >50 citations). Search queries employed Boolean
operators across all databases: (“federated learning” OR "federated optimization™) AND (“compression” OR
"guantisation" OR “sparsification") AND (“privacy" OR "differential privacy"); (“mechanism design" OR
"game theory" OR "contract theory" OR "auction") AND ("federated learning”) AND ("privacy” OR
"compression"); (“"compressive sensing" OR "random projections™) AND ("federated learning™) AND ("privacy"
OR "differential privacy"); (“gradient compression” OR "model compression") AND ("federated learning™)
AND ("differential privacy"); ("incentive mechanism” OR "reward mechanism") AND ("federated learning™)
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AND ("privacy" OR "heterogeneous"). Papers published between 2018-2025 were included to capture
foundational works and recent developments. Results were filtered to English-language peer-reviewed
publications only.

Papers were included if they: (1) directly addressed privacy-aware compression for federated learning,
combining at least two of FL systems, compression techniques, or formal/empirical privacy guarantees; (2)
presented novel technical contributions such as new mechanisms, algorithms, formal privacy proofs, or
empirical evaluation methodologies; (3) were published in peer-reviewed venues including top-tier conferences
(ICML, NeurlIPS, ICLR, ICCV, ACM CCS, IEEE S&P, NDSS, INFOCOM, MobiCom), reputable journals
(IEEE 10T Journal, IEEE Transactions on Information Theory, ACM Transactions on Machine Learning), or
arXiv preprints with >50 citations; (4) included formal privacy analysis (e.g., differential privacy definition and
proof, privacy budget accounting) or quantified empirical privacy evaluation (e.g., resilience to gradient
inversion, membership inference, poisoning attacks); (5) provided experimental validation through theoretical
proofs with clear assumptions or empirical evaluation on standard benchmarks (MNIST, CIFAR-10, Image Net,
HAR) and/or realistic federated learning datasets. Papers were excluded if they: (1) focused on federated
learning without addressing compression or privacy simultaneously; (2) addressed compression or privacy in
isolation; (3) were workshop papers, technical reports, theses, or non-peer-reviewed articles; (4) lacked full-text
accessibility or verifiable privacy/compression metrics; (5) were position papers or surveys without novel
technical contributions; (6) addressed unrelated domains without clear federated learning application.

Following a structured four-phase selection process compliant with PRISMA 2020, database searches
returned 1,247 papers. After automated duplicate removal (n=203), 1,044 unique papers remained. Two
reviewers independently screened titles and abstracts using a structured screening form with decision criteria for
each research question; 164 papers were flagged as potentially relevant. Full texts of all 164 papers were
reviewed against inclusion/exclusion criteria by two independent reviewers with conflicts resolved by
discussion. Papers were excluded with explicit reasons: insufficient technical depth or novelty (n=41), no formal
privacy guarantee or quantified privacy metric (n=38), no quantified communication or accuracy metrics
(n=12), redundant scope or lower methodological quality (n=11). This resulted in 62 eligible papers. From
these, 50 papers were selected for detailed review and analysis based on three weighted factors: citation impact
(weight 0.4; papers with >50 citations in Google Scholar), methodological rigor (weight 0.4; presence of formal
proofs, reproducible experimental design, clear privacy parameters), and recency/relevance (weight 0.2; priority
to 2021-2024 publications). Snowballing (reviewing references of selected papers) identified 8 additional
papers; 2 met criteria and were added, for a final review set of 50 papers.

From each included paper, we extracted structured data using a standardized extraction template:
bibliographic data (authors, year, venue, citations), methodological data (mechanism/approach category,
technical contribution, threat model), privacy data (guarantee type with &/d values, formal vs. empirical,
composition tracking), communication/compression data (reduction ratio, compression method, bits/dimension),
utility/accuracy data (dataset, benchmark metrics, accuracy loss), experimental setting (number of clients,
rounds, FL variant, hardware platform), and robustness evaluation (attacks evaluated, defenses employed). The
52 papers were systematically categorised into four primary families: (1) Numerical Mechanism Design (n=8;
examples: MVU, I-MVU), formalising privacy-aware compression as a mechanism design problem jointly
optimising noise parameters and quantisation levels; (2) Compression-Based Methods with Privacy (n=18),
applying compression techniques with integrated privacy; (3) Incentive-Compatible and Game-Theoretic
Mechanisms (n=7), modelling clients as strategic agents with heterogeneous privacy preferences using game
theory; (4) Real-World Implementations and Empirical Evaluation (n=12), demonstrating privacy-aware
compression on realistic systems; (5) Hybrid/Multi-Family Approaches (n=5), combining contributions from
multiple families. Categories are not mutually exclusive; papers addressing multiple families were tagged
accordingly.

Given heterogeneity of reviewed papers (theoretically applied), we employed a custom quality
assessment framework. For theoretical papers (n=21, 40%), we assessed formal correctness (presence of
complete proofs, clear assumptions), novelty (degree of algorithmic innovation), and generality (breadth of
applicability). For empirical papers (n=31, 60%), we assessed experimental design (standard benchmarks,
ablation studies, multiple baselines), reproducibility (code availability, detailed hyper parameters), realism (non-
IID data, system heterogeneity, realistic configurations), and statistical rigor (error bars, confidence intervals,
significance testing). Bias considerations included: publication bias (reviewed papers predominantly report
positive results), venue bias (over-representation of IEEE 0T Journal: 4 papers, 7.7%), benchmark bias (75%
evaluate on MNIST/CIFAR-10; only 15% use large-scale datasets), and selection bias (emphasis on highly cited
papers may favour established methods). Papers were synthesised narratively, organised by taxonomy family,
extracting and comparing key performance metrics (communication reduction, accuracy loss, privacy budgets),
identifying common themes and divergent findings, and documenting methodological gaps. For papers reporting
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comparable metrics, numerical values were extracted, tabulated, and analysed to derive ranges, medians, and
trends.

This review has several important limitations. Search scope was limited to four major databases; grey
literature and non-English publications were excluded, potentially biasing results towards highly-indexed works.
The temporal scope beginning in 2018 may miss foundational work on differential privacy or compression from
earlier periods. Emphasis on citation counts and methodological rigor may inadvertently favour visible, well-
established methods over novel contributions. Most papers evaluate on MNIST/CIFAR-10; generalisation to
large-scale, heterogeneous real-world datasets is uncertain. Inconsistent terminology (e.g., "client-level DP" vs.
"record-level DP"), different privacy accounting methods, and varying experimental setups complicate
quantitative comparison. Absence of a universally accepted quality assessment tool means quality judgments
involve subjective elements. Despite these limitations, the systematic methodology, transparent selection
criteria, structured data extraction, explicit bias discussion, and PRISMA 2020-compliant reporting ensure
reproducibility and scientific validity of this comprehensive survey.

I11. Result

3.1 Mechanism Design and Numerical Approaches

A significant thread of work employs mechanism design (from differential privacy theory) to optimise
the trade-off among the competing needs of privacy, accuracy, and bandwidth in FL. Numerical mechanism
design is the process of posing an optimization problem for noise mechanism parameters instead of using off-
the-shelf DP mechanisms (e.g. Laplace or Gaussian) with ad-hoc tuning4. Guo et al. (2022) proposed the MVU
mechanism8, which computes an unbiased differentially private update (its expected output equals the true
gradient) and uses a small number of bits for communication. By solving for the mechanism parameters that
minimise the output variance subject to these constraints, the MVU achieves an optimal trade-off between
privacy and utility compared to past methods which simply compose compression with DP without scaling [9].
MVU has problems with high-dimensional models because of computational scaling [10]. To address this
problem, Guo et al. introduced the I-MVU. as a generalisation that weakens the unbiasedness condition and
introduces an interpolation in numerical design, significantly enhancing the scalability and privacy analysis
efficiencyll. The I-MVU approach achieves SOTA performance in communication-efficient private FL,
matching or outperforming the accuracy of existing approaches under the same privacy constraint with very
small budgets [13]. For example, I-MVU with a 4-bit per-gradient output achieved a performance like the
baseline that sent full 32-bit gradients using a DP noise of 14. The 4-bit I-MVU achieves the same privacy—
utility trade-off as the uncompressed DP mechanism (Laplace noise), while using fewer bits (e.g. 1-2 bits) that
only slightly degrade the accuracy [16],[17]. These results suggest that well-thought-out mechanisms can
compress communication drastically (eight times or more) without compromising model performance and
privacy budgets 18. In addition to MVU/I-MVU, other mechanism design approaches include the optimization
of privacy budget usage across rounds or clients and Stackelberg game models that consider server and user
noise levels placed strategically. These guarantee incentive compatibility: clients have an incentive to behave
according to the protocol and not lie about their data. For example, certain works can achieve client-specific
privacy budgets through multidimensional contracts or auctions based on the quality of a client’s (or user's) data
and desired compensation for a loss of privacy (e.g. obtaining more sensitive data requires more privacy).
Although we are unable to provide complete game-theoretic models here, the main point is that mechanism
design offers a principled approach for obtaining compression-cum-privacy schemes which are optimal or
incentive-compatible in theory [20]. The results obtained using these methods (for example, 1-MVU) are now
state-of-the-art and achieve better accuracy with the same privacy as the previous approach that would have
applied DP after compression/vice-versa [21].

3.2 Compression Techniques and Privacy Guarantees

Outside the scope of mechanism design, several learning compression methods have been proposed for
FL that may implicitly include or enable privacy preservation. One widely shared objective is to make updates
communicated as small as possible (to conserve bandwidth and energy), while guaranteeing that compressed
updates do not disclose sensitive information involving noise or cryptographic techniques. Key approaches
include:

D-CLAP Compressive Sensing (CS)-based Compression: CS [2] relies on random sparse projections to
compress high-dimensional gradients into low-dimensional ones. Recently, Chen et al. (2024) developed a CS-
based gradient perturbation method to address privacy issues in FL [22],[23]. They introduced noise in the
compressed domain with a structure that can confuse both the original feature gradients and label information
and reduce the leakage of information. With this method, a second aggregation of partial results makes it even
more difficult to trace individual contributions [24]. The result is a system in which, if an adversary eavesdrops
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on the vector being transmitted between clients, recovering any client's actual data and label values is a very
challenging problem. The CS-based approach only has a mild computation overhead (fast matrix multiplication
for compression/decompression) and dramatically reduces communication. Experiments have shown better
privacy and bandwidth compared to DP or secure aggregation [25]. The authors showed that (against gradient
inversion attacks) it provides strong privacy protection with high model accuracy and can serve as an effective
supplement to quantisation or dropout compression [25],[23]. Adaptive quantisation: Model updates are first
quantised to use fewer bits (e.g. 8 bits, sign gradients). Methods such as gradient sparsification (only sending the
top-k important gradients) and numeric rounding fit this category. Lang et al. (2022) introduced a combined
quantization + differential privacy approach [26], whereby the gradients are firstly quantized to shrink their size
followed by the addition of calibrated DP noise so as to ensure that the joint action meets a desired level of
privacy protection. They effectively co-designed the clipping threshold, quantisation level, and noise variance,
and achieved up to 90% communication savings with marginal accuracy degradation under guaranteed privacy
(in (g,0)-differential privacy) [26]. Quantisation introduces some distortion (it can be thought of as noise), so the
idea is to benefit from it and use it for privacy; thus, you can often have less explicit noise than what would
otherwise be required. Recent work has demonstrated that adaptive clipping and quantisation can preserve
model accuracy at levels similar to the full-precision baseline, even under strong DP protection [27],[19]. For
instance, Sign SGD (sends the sign of each gradient) surprisingly enhances robustness and serves as variance
reduction in some cases, being even stronger than the standard DP baseline in private FL [18],[17]. This
demonstrates that properly chosen compression can potentially achieve privacy or regularisation gains
implicitly. Auto encoder Compression: A study employed learned models for update compression. Y. Chen et
al. (2024) proposed an approach where each client leverages a trained lightweight auto encoder to compress its
model update before uploading it [28, 29]. The objective of the auto encoder is to reconstruct model updates,
thereby learning an efficient low-dimensional representation of the model’s weight update. One key advantage
is that the compression is data-dependent yet local; the server never receives raw updates or the full model
difference. The authors found nearly 4x reduced communication (e.g. 1/4 size of the original training size) with
marginal accuracy loss compared to uncompressed training [29]. Privacy can also be increased because the
bottleneck of an auto encoder may function as a type of noise insertion or obscurant (sensitive details are
removed). The auto encoder-compressed updates were observed in experiments to have improved resistance to
some reconstruction attacks compared to raw gradients [28]. In other words, by sending not the original gradient
but a smoothed version of it, some finer details are obfuscated. This method is appealing for enterprise or
industrial FL, where compressive models can be trained using custom per-architecture regression. Hybrid
Approaches: Several works that combine two types of techniques for privacy — e.g. a combination both pruning
and DP (i.e., removing small updates entirely before adding in noise) or quantization and homomorphic
encryption secure aggregation). Zhu et al. (2022) proposed a perturbed model compression scheme [30], in
which each client offloads only a fraction (e.g. 10%) of the model parameters (those identified as most
important) and introduces some small random perturbation. Even though they only communicated
approximately 9.5% of the full model, their framework managed to retain 97%+ of the accuracy of training
using the complete model, while reducing communication by over 90% [30]. This means that many model
parameters can be severely compressed or dropped if carefully chosen, and with mild noise, the privacy of the
dropped parameters is preserved (because they cannot be inferred by an attacker exactly). Another hybrid
example is Jiang et al. (2023) for industrial edge FL, where they integrated local DP noise and adaptive
compression [5],[31] — their system optimally determines the compression ratio relating to each individual
device’s resources and injects noise on gradients. They outperformed the baseline DP methods (for example,
DP-FedAvg) in terms of accuracy on MNIST and a Human Activity Recognition dataset, even when using less
than half of the communication budget at the cost of being robust to poisoning attacks [6], [32]. These findings
illustrate that engineering decisions regarding when and where to compress and how to inject noise can pay off
handsomely.

In short, these compression methods, such as sparsification, quantisation, compressive sensing, and
learned compression, have been transplanted into the FL domain to tackle communication bottlenecks.
Multiplication of these models with privacy mechanisms (differential privacy [4] or encryption) results in multi-
order variance reductions while adding little loss to model accuracy [6]. Crucially, many of these methods come
with an inherent privacy boost; compressed updates reveal less information about the input distribution than raw
gradients, and if randomisation is employed (as in CS or quantisation), noise due to randomness can be merged
with DP noise. Thus, inpre-compression, privacy and efficiency complement each other rather than
contradicting.
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3.3 Incentive-Compatible and Game-Theoretic Mechanisms

A challenge for \\textit {federated learning} is heterogeneity; for example, clients may have different
qualities of data, computing power, and privacy preferences. Consequently, researchers are increasingly relying
on concepts from game theory and mechanism design to incentivise every client to participate in the protocol
honestly. Privacy-aware compression in privacy-aware compression, incentivised mechanisms update rewards
or privacy budgets to make rational clients behave socially optimally (e.g. apply noise and compress as specified
instead of sending exact gradients or lying at updates). Some studies consider FL as a Stackelberg game
between the server (leader) and clients (followers). The server’s strategy could be to promise a specific payment
or functionality enhancement in return for the desired level of privacy from clients and then invite their
responses. For example, Wu et al. (2021) introduced a multidimensional contract theory approach such that
clients receive incentives subject to the model update accuracy induced by model contributions and the
perturbation level (noise) they provide. These schemes achieve an equilibrium where clients with better quality
data are reimbursed for stronger privacy (which could, in turn, lower model accuracy) so that individual and
global objectives become aligned. Another mechanism is auction-based. Liu et al. (2021) proposed a reverse
auction approach to cross-silo federated learning (FL)33: Each silo, i.e., client bids their price for losing privacy
and the server decides clients covering the minimum cost with an acceptable model accuracy. This way, it can
favour clients who are willing to handle more noise (trade off less privacy) at a lower cost, and all the rest have
a chance to opt out or prioritise joining only if their privacy concerns are addressed. We are left with a kind of
customised market-driven division of the privacy budget. The simulation results indicate that such auctions can
offer significant reductions in the overall privacy “cost” (less noise) required for a given accuracy relative to the
one-size-fits-all DP.

In [39, 40], Stackelberg game models are leveraged to achieve robust compression against adversarial
clients. For instance, Fang et al. (2022) included a reputation system (for unreliable update detection) in the
incentive mechanism. (Possibly attacking) clients with bad reputations have a lower effective privacy budget or
can be dropped, which incentivises clients to act properly and not pollute their model.

Although these game-theoretical mechanisms are typically theoretical or simulated, they embody an
important facet: personalisation and dynamism. In practice, FL clients may have heterogeneous privacy
necessity; a health data provider could require e=1 DP (strong privacy) while allowing a public dataset client to
accept &=5. Incentive mechanisms also enable each of them to work on different positions on the privacy-
accuracy curve while ensuring that the group still learns a global model. They also indirectly optimise the way
communication resources are used (clients with a slow network could be incentivised to compress more, etc.). In
general, the literature indicates that incentive-aligned designs can help ensure higher participation and better
balance the tradeoff between privacy and utility in heterogeneous networks. This is a blossoming field that
connects economics and FL, which is also necessary because some of the advanced privacy and compression
methods will not be adopted in practice without this.

3.4 Practical Applications and Evaluation

We next present the performance of these privacy-aware compression methods in practical FL scenarios
and on standard datasets, both with and without attackers. The following experiments were performed. Standard
Benchmarks: Several works evaluate their methods on standard datasets such as MNIST, Fashion-MNIST (for
the handwritten digits and clothing images respectively), CIFAR-10 (images) etc and Human Activity
Recognition (HAR) data [6],[31]. This is typical in FL research and serves to compare with known baselines
(FedAvg and similar ones). It is generally agreed that in the privacy-aware compression setting, centralised
model accuracy can be maintained within a small gap of the baseline (no compression, no DP) one at greatly
reduced communication. For instance, Hidayat et al. (2024) used 95% of the baseline accuracy over MNIST and
HAR to achieve a total communication reduction of at least 50% while being DP [6]. Zhu et al. (2022) achieved
97% accuracy on MNIST with only 9.5% of the original update size transmitted [30]. Chen et al. (2024) also
report barely changed accuracy on CIFAR-10 with their learned compression approach [29]. These results
undermine the premise of “privacy or compression means poor accuracy”; rather, sound design can render the
loss in accuracy insignificant. Communication and Efficiency Metrics: In practice, the communication cost is in
bytes sent per client per round (or av. GB), or the total GB transferred. Multiple studies have reported a one to
two orders of magnitude decrease in communication. For instance, Ayat Hidayat et al. (2024) claimed that their
approach achieved less than half of the communication over prior DP-FedAvg with competitive accuracy
[31],[32]. Xi Zhu et al. reduce the size for uploading by 90% [30]. The training time is also improved in such
cases (fewer bytes means faster transfer; one study showed a 50% reduction in the total training time under
some settings by compressing updates [35]). These efficiency savings are paramount for edge computing and
10T installations, where devices may rely on batteries and network speeds are low. A few studies even focus on
edge scenarios, such as Bin Jiang et al. (2023), in which the hybrid use of DP and compression for an industrial
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IoT scenario was included and demonstrated to outperform pure encryption, aspects used which were slow or
bandwidth expensive [5],[36]. Robustness to Attacks: Adversarial evaluations (including poisoning and gradient
inference attacks) are also considered. Privacy-preserving compressed FL is also more resistant to some attacks
than vanilla FL. This is reasonable because perturbed or noisy gradients are more challenging to exploit.
Empirically, adding DP noise with sparsification increases the amount of work required to reconstruct some
original data from the (noise-distorted) gradient [37], [38]. For instance, Liu et al. (2023) showed that gradient
encoding (with randomisation) could thwart a class of inversion attacks that can circumvent plain FedAvg [39],
[40]. For poisoning (when malicious clients send incorrect updates to poison the model), some sparsification
methods mitigate the effects of outliers. Hidayat et al.: that their DP + compressive approach resulted in
significantly smaller dropping of accuracy under a label-flipping attack compared to baseline FL (only ~1.9% vs
>13%), 26, 35]. The noise and clipping ensured that an attacker’s update would only move the global model by
a small amount. Byzantine-robust compression techniques (e Hu et al., 2024) are designed to explicitly filter out
or average the malicious updates in the compressed domain and achieve high tolerance to a fraction of corrupted
clients [41], [42].

Deployment feasibility: Several studies have prototyped their methods on real systems (e.g. Raspberry Pi
clusters and mobile test beds) to validate their feasibility for deployment. These results indicate that privacy-
aware compression algorithms are lightweight and can be deployed on devices for practical applications. For
example, in one experiment, the study used FL training with Android smart phones and loT sensors (again)
while using resource-adaptive compression, dynamically choosing a level of compression each round depending
on the device’s current CPU and memory to keep training smooth [5],[36]. This active procedure guarantees that
no unit fails due to an overloaded system and suggests that such methods can be adjusted to meet practical
requirements.

In conclusion, considering our practical performance evaluations, privacy-aware compression methods
can empower more FL-efficient and secure systems with real-world applicability. The good news is that a high
degree of accuracy (sometimes within 1-3% of the non-private baseline) is possible under strong privacy
guarantees (e.g.e<2), despite large cuts in communication [6], [32]. Furthermore, these techniques bolster the
system against existing attacks, such as data reconstruction and model poisoning. Table 1 The mechanisms and
results of some key studies are summarised in Table 1.

Table 1: Comparison of Key Studies on Privacy-Aware Compression Mechanisms for FL. Each approach
achieves a different balance of privacy guarantee and communication reduction, with only a minor impact on the

model utility.
Paper . . Communication .
i (Year) Mechanism / Method || Privacy Guarantee Reduction Utility / Key Results
Guo et Interpolated MV U (I- SOTA privacy-utility—
MVU), numerically . ~8x (e.g., ~4-bit ||bandwidth trade-off;
1 |jal. L Client-level DP . .
optimized DP updates) scalable to high-dim
(2022) :
] mechanism models
L. Resource-adaptive ,
Hidayat compression + _ ~2%_3% vs DP Higher accuracy and faster
2 |let al. . . Client-level DP . training; improved
compressive sensing + baselines N
(2024) DP robustness to poisoning
] S. Chen (|Compressed sensing . . . . Strong leakage resistance;
3 |letal. gradient perturbation + \?i;ad;?J/r?;?cl)ﬁrlvacy \Ije:gtf;r(f)rmected low compute overhead;
| ||(2024) ||double aggregation P accuracy ~ baseline
4 Zhu et al. ?g&rs%g;r(’;trj]r?jdlg;gdel Model/parameter 90%-+ upload ~97% baseline accuracy at
(2022) ~10°2)) P privacy (DP-like) reduction 9.5% upload
Y. Chen Autoencoder-based Implicit privacy Negr-no accuracy drop; .
5 lletal learned compression (bottlenecked codes) 4 1x resists some reconstruction
| ||(2024) P attacks
Hu et al. Byzantlne:*-robust Privacy + Byzantine High (compressed || Tolerates malicious clients
6 compression + secure . . .
(2024) aggregation robustness domain) while preserving accuracy

|Lang et |[Joint quantization + DP ||(¢,5)-DP

||Up to ~10x

|[Minimal accuracy loss
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] Paper . . Communication .
i (Year) Mechanism / Method || Privacy Guarantee Reduction Utility / Key Results
al. (calibrated noise) with tuned
| ][(2022) clipping/quantization
] Jiang et ||Hybrid DP + adaptive i
8 [al. compression (industrial ||DP ~2x boal;;ﬂ?;];zrgs&u,\rl‘is?_% AR
| ||(2023) |ledge)
Sattler et Sparsification + robust ||— 10x-100x Strong comms savings
9 lal. - -
(2019) aggregation (efficiency/robustness) ||(reported) under non-11D
] Fang et |[FL for IoT with DP + . .
10|jal. compression DP + others Various (I:;aflz(t)lcr:ﬂe%l:;dance for loT
| ]|(2021) |[survey/framework ploy

3.5 Top Contributors in the Field

We noticed that some authors and venues tend to appear more often in our 50 read papers, which show
the well-driving power of these authors or venues. Chuan Guo and Kamalika Chaudhuri (MVVU/I-MVU works)
had multiple influential papers respectively, so did Siguang Chen (CS-based FL), among others. At the end of
the publishing, at least four of these top papers were published in the IEEE Internet of Things Journal (which
corroborates that FL has important applications in the context of 10T), and venues such as Future Generation
Computer Systems and ArXiv also gained prominence. The top contributors are shown in Figure 2.

Figure 2: Top authors in literature review the orange bars (left) demonstrate the top authors (Guo,
Chaudhuri, and Chen) with two primary papers in this review, indicating their remarkable contributions to
privacy-preserved FL. The green bars (right) display the top publication venues; in particular, the IEEE loT
Journal (four papers) has turned out to be a major outlet, reflecting active research engagement with FL privacy
in 10T scenarios.
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Figure 2: Top authors in the literature review
The orange bars (left) demonstrate the top authors (Guo, Chaudhuri, and Chen) with two primary papers in this
review, indicating their remarkable contributions to privacy-preserved FL. The green bars (right) display the top
publication venues; in particular, the IEEE 10T Journal (four papers) has turned out to be a major outlet,
reflecting active research engagement with FL privacy in 10T scenarios.

These authors have contributed to the development of the field by making theoretical and practical
improvements (e.g. designing new DP mechanisms) and system-level improvements (implementing FL
frameworks with compression on edge devices). The predominance of loT-related locations in our taxonomy
indicates edge computing as a major application area for privacy-preserving FL studies. The methodologies
developed in this study have been utilised in smart healthcare, smart vehicles, and other 10T environments
where data are sensitive to be transferred across the network under limited bandwidth.
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IVV. Discussion

The surveyed work shows that privacy-aware compression in FL is possible with significant gains
through principled design. In particular, the combination of mechanism design (optimal noise addition
strategies) with advanced compression is very strong. The MVVU and I-MVVU methods from [1] are particular
success stories of this synergy; they strike a near-optimal balance between privacy, accuracy, and
communication by minimising an objective designed for FL [20]. While traditional systems design privacy and
compression as decoupled components, by designing them jointly, we demonstrate improved performance over
the existing set of ad-hoc solutions (e.g. compress-then-noise). Similarly, compressive sensing and learned
compression techniques combined with differential privacy show that most of the redundancy in model updates
can be eliminated without loss of learning or privacy [2],[3],[5]. These techniques push the Pareto frontier to an
optimal degree: for a given privacy level, they maximise accuracy and minimise bandwidth [19],[43].

However, several challenges and open issues have emerged. One recurring story is the “no free lunch”
tradeoff: when privacy or communication are enhanced, it will eventually be at the expense of accuracy if one
goes far enough [44][17]. TACRED A Few authors have mentioned that the performance of models decreases
non-linearly after a certain compression ratio or noise level beyond a tipping point [17]. For instance, when we
inserted 1-bit characterisations (instead of 4bit) into the I-MVU comparison, the accuracy decreased
significantly [17]. This is to remind us that there are limitations—extreme privacy (very small €) with very high
compression can make learning ineffective. Therefore, tuning and customisation must be performed to locate the
sweet spot of the trade-off for each case. Recently derived personalised FL approaches [12] have been designed
to provide each client with an appropriate privacy/communication setting to maximise overall utility.

The second issue is robustness. Although noise addition and compression can dilute some attacks,
intelligent attackers may be able to adjust their strategies. For example, a poisoner could continue to attack the
model bit by bit in such a way that no single round is clearly malicious (evading defences based on clipping or
averaging the extreme values). Some compression techniques, such as sparsification, may also be used by a
malicious attacker who tries to discard useful gradients. Ongoing work includes integrating Byzantine-robust
aggregation (e.g. median or trimmed mean) with compression and DP [45],[42]. Hu et al. (2024) [6] improved
on this by working with compressed vectors and demonstrated staying robust to up to 30% malicious clients
while compressing updates. However, further work is required to obtain full security against adaptive attacks
(adaptive poisoning, inference attacks which know the compression scheme, etc.).

The field is also shifting towards more adaptive and online approaches. Instead of a fixed compression of
level or noise magnitude, techniques that adapt on-the-fly, for example, increase compression when the network
is congested or add more noise if they might be a potential privacy breach, will make systems robust. Resource
heterogeneity (clients with very different capabilities) is indeed a real-world issue; approaches such as resource-
adaptive compression by Hidayat et al. tackle this by customising the approach to each client’s CPU/memory
[5]. This prevents a small number of stragglers or weaker devices from completing the training.

The last discussion point was: how can we deploy this in the real world? To date, most experiments have
studied academic datasets; evaluating these methods under deployment (e.g. in Google or Apple’s FL systems
targeting mobile phones) will provide a better indication of their scalability and reliability. Challenges regarding
privacy-bookkeeping over multiple rounds, regulatory compliance of DP guarantees, and compatibility with
existing communication protocols must be overcome. The good news is that some companies are already paying
attention; the MVVU paper [1] is a collaboration with researchers at Meta, demonstrating industry interest in
these solutions for next-gen private Al.

The main conclusions of the literature and the level of evidence in the synthesis are summarised as
follows:

Table 2: Mechanism & Compression Taxonomy (What, How, Why)

Family Representative Core Idea Where Privacy Pros Cons/ Caveats
Papers Comes From
Numerical For_mal .DP_ . Complexity
- A . calibration; Near-optimal L
mechanism , Optimize DP noise + . . ) scaling; very
: Guo’22 . L unbiased/bias- trade-offs; :
design (MVU / I- bit budget jointly low bits may
controlled theory-backed
MVU) . hurt accuracy
mechanisms
N . Needs careful
Quan_tl_zatl_on & Lang’22, Low-bit / top-k + DP + distortion B'g. comms clipping;
sparsification (+ , . . . llsavings;
Sattler’19 calibrated noise acts as obfuscation||”. extreme
DP) simple .
compression
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Representative

Where Privacy

Family Papers Core ldea Comes Erom Pros Cons / Caveats
| | I I || degrades utility |
Proiection + noise Strong Projection
Compressive S. Chen’24, Random projections +||, . ) leakage design matters;
. N ! hide - ) .
sensing (CS) Hu’24 perturbation radients/labels resistance; decoding error
g low overhead ||control
Learned Train Bottleneck . . Training cost;
. , . High ratio, robustness not
compression (auto||Y. Chen’24 encoder/decoder for  |[removes sensitive !
- task-adaptive ||fully
encoders) updates detail .
characterized
Hybrid DP + Jiang’23, Combine DP noise DP + . Strong threat Crypto .
secure . : cryptographic overhead; key
. various with crypto/agg S model
aggregation hiding mgmt, latency
. . Mostly
Incentive/game- , o Contracts/auctions set Personalllzed Allg_n_s . theory/sim;
h Wu’21, Liu’21 . : budgets; truthful ||participation i
theoretic privacy/compression - : deployability
reporting & privacy open

The table above captures the consensus: tectonic progress has been made, but there is no magic bullet.
Mechanism design provides us with near optimality for specific assumptions, but this may be violated by real
FL (non-iid data, the number and types of clients are quasi-random). Compressive approaches offer practical
efficiency, but it is necessary to verify that the compressions themselves do not obfuscate relevant patterns or
enable subtle attacks. The good news, however, is that the trends are all in favour of making FL more practical:
communication constraints are being loosened, and privacy is being strengthened simultaneously.

Communication

Research Coverage Heatmap

3 2 4
Efficiency
Model Accuracy 3 2 3
Personalization [ 2 1 1 4 1
Real-World | 2 2 1 1 1
Deployment
1 1 1 1 1
> @ < e ]
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Figure 3: Research Coverage Heatmap — coverage of interesting questions by various methods (darker = more
explored). We observe that Differential Privacy and Compressive Sensing methods (left column) systematically
address communication efficiency and accuracy (top rows, deep red), whereas personalisation and real-world
deployment considerations are less investigated among all approaches (bottom row, light yellow). Incentive
mechanisms (second from the right) disproportionately address personalisation more than the others (orange in
that cell). Security against attacks (rightmost column) is of fair focus but could be strengthened for approaches
such as auto encoders (light cells).
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The heatmap (Fig. 3) also shows the potential missing parts of our research. Core metrics such as
efficiency and accuracy (as much of the literature appears to optimise for these trade-offs under DP). Incentive
mechanisms are a notable exception in relation to targeting; they address personalisation (as they inherently
incorporate personal preferences), but no other method does so. However, regardless of the type of paper (values
1-2), personalisation and real-world deployment were lightly addressed in all types of I-targeted articles,
indicating possible future work. We briefly addressed robustness (to some extent, e.g. in DP as well as
compressive methods under secure aggregation), but such does not receive much coverage when combined with
recent techniques such as auto encoder compression.

V. Conclusion and Future Directions

Privacy-conscious compression for federated learning has quickly transitioned from a conceptual
possibility to a state-of-the-art practical method. In this review, we observed that mechanism design-based
approaches (for example, 1-MVU) can, in theory, achieve optimal privacy-accuracy-communication trade-offs
and, in practice, yield excellent performance, essentially allowing for training as well as standard FL but with
strong privacy and a fraction of the communication load. Combining differential privacy with compression is a
win-win situation: noise improves privacy while the amount of information is decreased, and if performed
properly (e.g. unbiased or bias-corrected mechanisms), the model accuracy is still large [19],[43]. These
techniques, including compressed sensing, adaptive quantisation, and learned auto encoders, enrich the toolkit,
providing alternate modes of slicing the problem according to the dataset and device constraints. Through
empirical studies conducted on benchmark datasets and simulated 10T deployments, we show that these
algorithms are not only theoretically sound but also practical and effective in real-world-like settings. A
significant fraction of them achieve > 90% reduction in communication with only a slight accuracy loss and
provable privacy guarantees [2], [4], [5]. This property renders federated learning much more efficient and
relevant for networks of small devices (e.g. wearables and sensors) operating under stringent privacy constraints
(as for user data with GDPR).

However, there are clear challenges to address before such techniques can be deployed at scale in the real
world.

5.1 Research Gaps
Despite this progress, several gaps in the literature have been identified (Figure 3). We summarise the
key underexplored areas in the matrix as Table 3.

Table 3: Claims & Evidence Map

. Evidence . -
Claim Strength Rationale / Findings Example References

Mechanism design (MVVU/I-MVU) Numerical optimization beats inn. .
gives SOTA privacy-utility—efficiency Strong ad-hoc compress-then-DP Guo22; Chaudhuri“22
CS + adaptive quantization comms Stron 2x-10x fewer bytes at similar  ||S. Chen’24; Lang’22;
while keeping accuracy g accuracy under DP Zhu’22; Y. Chen’24
Incentive-compatible mechanisms Stackelberg/auction designs 1T s
improve participation & balance Moderate align client choices Wu'2l; Liw2l
Privacy-aware compression increases Moderate Noise + projection + clipping  ||[Hidayat’24; S.
robustness to leakage/poisoning blunt attacks Chen’24; Hu’24
No-free-lunch trade-offs persist Moderate Utility declines beyond certain ||Guo’22; Lang’22;
(extreme privacy/compression hurts) thresholds Zhang’22
Some methods degrade in adversarial Specific counterexamples & Ding’24 (leakage vs

: Weak .
settings new attacks compression), others

We observe that personalisation (tuning privacy/compression per client) and real-world deployments are
not well addressed for most methods, indicating that there is much room for improvement. However, several
state-of-the-art techniques only moderately address these threats and leave space for improvements, especially
considering that more evolved attackers are expected in the future. Other cell comparisons in contrast, much of
the work has focused on core DP and compression for efficiency and accuracy (bright green cells); therefore,
future efforts could further move towards softer dimensions (user-centric and deployment considerations).
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5.2 Open Research Questions
Building on the gaps identified, we propose several open questions for the community.

Table 4: Datasets, Metrics, and Typical Settings

| Aspect || Common Choices || Notes for Interpreting Results

Lightweight vision/time-series; good

Datasets MNIST, Fashion-MNIST, CIFAR-10, HAR .
for ablations

FedAvg / FedProx; 10-100 clients; non-11D

FL Setup Non-1ID stress-tests compression + DP

splits
Privacy Metrics (2,6)-DP; user/client-level DP; privacy budget Track composition across rounds
per round
Communication Bytes/client/round; total GB; compression ratio; .
. : Normalize by rounds to compare
Metrics bits/coord
Utility Metrics Test accuracy/F1; convergence rounds Report gap vs non-private,

uncompressed baseline

Leakage (grad inversion), poisoning/Byzantine |[Evaluate under adaptive & label-flip

Robustness rate attacks

[Overheads |[Client CPU/GPU time; wall-clock; energy |[Important for edge/IoT feasibility

These are questions toward the next stage of study: how to ensure that privacy-aware and efficient FL is
not only a lab demo but also becomes one of the most popular technologies. By security, we mean that of
adversaries; by flexibility and user alignment, we mean those of human subjects (personalisation among them);
finally, deployment concerns would be those underneath the engineering hurdles that today confine FL to a few
large tech companies.

Privacy
10

Homomaorphic
L ]

0.8 0.2
DP-SGD
L]
Secure Aggregation
0.6 g.g < 0.4
0.4 - 0.6
Federated Leaming
L ]
0.2 0.8
Baseline (No Privacy)
L]
0 1
0.8 0.6 0.4 0.2

1 0
Utility Efficiency

Figure 4: Privacy-Ultility—Efficiency Trade-off. In federated learning, we aim to find the sweet point (red dot),
which compromises high privacy, high model utility (accuracy), and high communication efficiency. Too much
focus on any one goal (the corners of the triangle) will harm the others; a moderate approach is required. In
future work, we will look for a wider area of this feasible region to approach all the corners as closely as
possible, in other words, to obtain stronger privacy and better accuracy at a lower cost.
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Finally, the intersection between federated learning, data privacy, and communication constraints has
created an exciting new area of research. Privacy-aware compression mechanisms, particularly those that use
mechanism design, are both theoretically clean and useful in practice. They enable the learning of valuable
models over federated data silos without compromising user privacy or flooding networks. As we further
develop these techniques and resolve open challenges, including robustness and personalisation, we hope to
reach a world where all sorts of data (images, speech, etc.) can be collected at scale in an ever-distributed
manner (e.g. user-generated content on smart phones) while enabling knowledge sharing about this data across
device boundaries subject to local privacy constraints. For example, learning in an isolated rural village can
benefit from what is learned by models around the world without directly revealing what is learned locally. The
advancements so far are promising, and with continuous research efforts, federated learning can play the role it
is capable of as a privacy-preserving paradigm in the Al era.
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