APPLICATIONS OF FIBRE REINFORCED COMPOSITE POLYMER IN CONSTRUCTIONS

MOHD AFZAL BASHEER PASHA¹, PERLA KARUNAKAR² KUSUMA SUNDAR KUMAR³

¹(MTECH (SE) student department of civil engineering Usha Rama college of engineering and technology)
²(ASSISTANT PROFESSOR department of civil engineering Usha Rama college of engineering and technology)
³(PROFESSOR & HEAD OF THE Department of civil engineering Usha Rama college of engineering and technology)

ABSTRACT: Fibres in forced polymer composites, developed primarily for the aerospace and defence industries, are a class of materials with great potential to use in civil infrastructure. Since the construction of the first all-composite bridge superstructure in Miyun, China, in 1982, they have been gradually gaining acceptance from civil engineers as a new construction material. During these 30 years, their proved to be useful in a few areas of application: mostly in form of sheets and strips for strengthening existing bridge structures, and to some extent, as reinforcing bars substituting steel as concrete reinforcement. Also, a number of constructions have built, in which FRP composites replaced traditional materials for structural elements (girders, bridge decks, stay cables). Among these constructions there is a relatively big amount of hybrid bridge structures, where only a part of the superstructure is made of FRP composites, and a much smaller amount of all-composite bridge structures, with superstructures made exclusively of this material.

The purpose of this paper is to present the state of the art in the use of FRP composites in bridge engineering with the focus on hybrid and all-composite structures. Firstly, the paper will present the basic information about FRP composites, including the definition, description of the components, mechanical properties and general areas of application. Then, it will focus on FRP composites as the material of which structural elements are made, describing manufacturing processes relevant to civil engineering applications, assortment of structural profiles, cables, tendons and bridge deck systems, presenting the problem of codes and design guidelines that refer to the use FRP composites as the construction material, and methods of joining structural elements. Thirdly, it will compare the properties of FRP composites with those of traditional materials. Finally, there are presented some examples of hybrid and all composite bridge structures and a list of 355 constructions made of this material around the world, with basic data and references providing more information.

Keywords: modern materials, FRP composites, fibres, polymers, GFRP, CFRP, all composite bridge structures, hybrid bridge structures

1. Introduction and objectives

The aim of this paper is to present FRP composites as the new material used for the purposes of civil engineering and prepare the state of the art in bridge structures using FRP composites for structural elements as the substitution of traditional materials. The body of the project consists of 12 chapters: five of the focusing on the description of the material and general application are as in bridge engineering, and the rest-on issues referring to two particular uses: hybrid and all-composite bridge structures.

Chapter one gives a general idea on FRP composite, defines it as a construction material and compares it to similarly working traditional materials.

Chapter two focuses on the components of FRP composite, presents various kinds of fibres used as reinforcement and compares the properties. It describes the ingredients of a matrix: resins, fillers and additives, as well as the importance of fibre-matrix bond

Chapter three lists a number of properties of FRP composites common for these kind of materials and then presents some of them, such as density, modulus, Poisson’s ratio and tensile strength with more details, giving simplified formulas to determine the values basing on the properties of the components.
Chapter four briefly describes general area of application of FRP composites in bridge engineering: repair and retro fitting of existing bridge structures, concrete reinforcement, hybrid bridge structures and all-composite bridge structures.

Chapter five focuses on manufacturing methods relevant to civil engineering applications, dividing the min to manual, semi-automated and automated processes. Of special interest is the pultrusion process, which provides the possibility to produce FRP composite elements on a bigger scale.

Chapter six presents the assortment of structural profiles, cables/tendons and bridge decks made of FRP composites, produced by various companies around the world.

Chapter seven gives a brief explanation of current status of codes and design guidelines referring to the use FRP composites as the construction material.

Chapter eight presents and compares various kinds of connections between FRP composite elements: adhesive, mechanical and mixed.

Chapter nine compares FRP composites to traditional materials, presenting their advantages and is advantages (uncertainties).

Chapter ten and eleven presents one examples of existing, representative hybrid and all-composite bridge structures, respectively. Chosen examples are constructions varying instructural type, year of construction and FRP composite system used. Finally, chapter twelve presents a list of 355 FRP-using bridges, specifying the name of the structure, location, year of assembly and some basic available data, usually including the length and width of the bridge and the manufacturing company, as well as references providing more information (articles, photos, additional data, etc.).

2. Introduction to the material. Definition.

Composite is defined as a functionally separable combination of two or more component materials, different at the molecular level, mixed purposefully in order to obtain a new material with optimal properties, different than the properties of the components (definition based on [1],[2],[3]).

Composite materials have been used in construction for centuries. One of the first was the use of straw reinforcement in mud and clay bricks by the ancient Egyptians [4]. The combination of reinforcing steel and concrete has been the basis for a number of structural systems used for construction for the last century. The new class of composite materials, gradually gaining acceptance from civil engineers, both for the rehabilitation of existing structures and for the construction of new facilities, are Fibre Reinforced Polymer composites, primarily developed for the aerospace and defense structures.

Fibre Reinforced Polymer composites are the combination of polymer resins, acting as matrices or binders, with strong and stiff fibre assemblies which act as the reinforcing phase[2]. The combination of the matrix phase with are in forcing phase produces a new material system, analogous to steel reinforced concrete, although the reinforcing fractions vary considerably (i.e., reinforced concrete containing 5% reinforcement, where as in FRP composites, according to various sources([1]-[5]), reinforcing volume fraction ranges from 30-70%).

3. Components and function

A fibre is a material made into along filament. According to[5], a single fibre usually has a diameter up to 15um. Bigger diameters generally increase the probability of surface defects. The aspect ratio of length and diameter can be ranging from thousand to infinity in continuous fibres. They usually occupy 30-70% of the volume of the composite and 50% of its weight.

The main functions of fibres are to carry the load and provide stiffness, strength, thermal stability and other structural properties to the FRP [2]. To perform these functions, the fibres in FRP composite must have high modulus of elasticity, high ultimate strength, low variation of strength among fibres, highest ability of the strength during handling and high uniformity of diameter and surface dimension among fibres.

4. Forms of fibres

There are various forms of fibres used as a reinforcement of polymer composites. Manufacturers of structural elements made of FRP composites usually present the variety of reinforcement techniques in specifications/design guides (for instance, Fiber line Composites in [6]). Basically, there are two forms of reinforcement: Rovings and fabrics [5].
Roving as a one-dimensional reinforcement of polymer composites:

Smooth roving - bundle of filaments arranged longitudinally in a free manner; interlace droving - bundle of filaments arranged longitudinally with elementary fibres interlaced in a loop to mechanically connect neighbouring roving.

tangle droving - bundle of filaments arranged longitudinally, interlaced mutually in order to provide better cooperation of the neighbouring filaments in a single roving.

Stapled fibres - short filaments made for example by cutting the smooth roving; minced fibres - very short filaments obtained by milling and sifting stapled fibres.

![Image of roving types](image)

Fig.1. Various forms of roving: a) smooth roving, b) interlaced roving, c) tangle droving[5]

In order to strengthen the surface elements in more than one direction of reinforcement (although unidirectional surface reinforcement is also produced), the following forms are applied:

Smooth roving fabrics – fabrics made of interlaced roving:

Interlaced roving fabrics - interlaced rovins connect neighbouring fabrics;

Mats - made of discontinuous, random fibres

![Image of fabric types](image)

Fig.2. Examples of surface reinforcement: plain roving fabrics: a) weave, b) oblique, c), satin, d) smooth unidirectional roving fabric, e) mat, f) roving plain interlaced weave fabric [5]
5. Types of fibres

The type of fibres used as the reinforcement is the basics for classification of FRP composites. There are three types of fibres dominating civil engineering industry: glass, carbon and aramid fibres. The table below presents properties of various kinds of fibres.

Tab.1.Properties of glass, aramid and carbon fibres [5]

<table>
<thead>
<tr>
<th>Typical properties</th>
<th>Fibres</th>
<th>aramid</th>
<th>carbon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glass</td>
<td>E-Glass</td>
<td>S-Glass</td>
<td>Kevlar 29</td>
</tr>
<tr>
<td>Density ρ [g/cm3]</td>
<td>2.60</td>
<td>2.50</td>
<td>1.44</td>
</tr>
<tr>
<td>Young’s Modulus E[GPa]</td>
<td>72</td>
<td>83</td>
<td>100</td>
</tr>
<tr>
<td>Tensile strength R_m[MPa]</td>
<td>1.72</td>
<td>2.53</td>
<td>2.27</td>
</tr>
<tr>
<td>Extension[%]</td>
<td>2.40</td>
<td>2.90</td>
<td>2.80</td>
</tr>
</tbody>
</table>

6. Glass fibres

Glass fibres are a processed form of glass, which is composed of a number of oxides (mostly silica oxide), together with other raw materials (such as limestone, fluor spar, boric acid, clay). They are manufactured by drawing those melted oxides into filaments ranging from 3 μm to 24 μm. There are five forms of glass fibres used as the reinforcement of the matrix material: chopped fibres, chopped strands, chopped strand mats, woven fabrics, and surface tissue. The glass fibre strands and woven fabrics are the forms most commonly used in civil engineering application. Relatively low cost comparing to other kinds of fibres makes E-glass fibres the most commonly used fibres available in the construction industry. The disadvantages of glass fibres are are latively low Young’s modulus, the low humidity and alkali inerstance as well as low long- term strength due to stress rupture. For applications involving concrete a more alkaline- resistant so-called AR fibre (also called CemFil fibre) has been developed with increased zircon oxide content[2].
<table>
<thead>
<tr>
<th>Lp</th>
<th>Name of the Bridge</th>
<th>Location</th>
<th>Country/State</th>
<th>Year</th>
<th>USE of FRP composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>207</td>
<td>Flatberg Bridge over B3</td>
<td>Friedberg</td>
<td>Germany</td>
<td>2006</td>
<td>deck</td>
</tr>
<tr>
<td>308</td>
<td>Footbridge over road no.11</td>
<td>Gdaski</td>
<td>Poland</td>
<td>2008</td>
<td>deck</td>
</tr>
<tr>
<td>309</td>
<td>Hollandschbrugke</td>
<td>Reinbek</td>
<td>Germany</td>
<td>2000</td>
<td>deck</td>
</tr>
<tr>
<td>310</td>
<td>Rolle Olads Bridge</td>
<td>Rolle Olads</td>
<td>USA, Florida</td>
<td>2000</td>
<td>deck</td>
</tr>
<tr>
<td>311</td>
<td>Lafayette Bridge</td>
<td>Lafayette, Indiana</td>
<td>USA, Indiana</td>
<td>2000</td>
<td>deck</td>
</tr>
<tr>
<td>312</td>
<td>Laurieten Footbridge</td>
<td>Unrecht</td>
<td>The Netherlands</td>
<td>2010</td>
<td>deck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lp</th>
<th>Name of the Bridge</th>
<th>Location</th>
<th>Country/State</th>
<th>Year</th>
<th>USE of FRP composites</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>Rolle Olads Bridge</td>
<td>Rolle Olads</td>
<td>USA, Florida</td>
<td>2000</td>
<td>deck</td>
</tr>
<tr>
<td>311</td>
<td>Lafayette Bridge</td>
<td>Lafayette, Indiana</td>
<td>USA, Indiana</td>
<td>2000</td>
<td>deck</td>
</tr>
<tr>
<td>312</td>
<td>Laurieten Footbridge</td>
<td>Unrecht</td>
<td>The Netherlands</td>
<td>2010</td>
<td>deck</td>
</tr>
</tbody>
</table>

References:

2. Ringers, J. and Gabler, M., The FRP road bridge in Friedberg Germany – new approach to a holistic and aesthetic design, in Proc. 4th Inter. Conf. on FRP Composites in Civil Engineering (CCCC2003), Erzincan, Turkey, 2003, pp. 925-929.
4. www.ijlret.com
APPLICATIONS OF FIBRE REINFORCED COMPOSITE POLYMER IN CONSTRUCTIONS

<table>
<thead>
<tr>
<th>No.</th>
<th>Name of the Bridge</th>
<th>Location</th>
<th>Country/State</th>
<th>Year</th>
<th>Use of FRP composites</th>
<th>Basic information and references</th>
</tr>
</thead>
<tbody>
<tr>
<td>348</td>
<td>Taylor Bridge</td>
<td>Headingley</td>
<td>Canada, Manitoba</td>
<td>1997</td>
<td>tendons</td>
<td>Length: 122.0 m; Width: 17.0 m; Manufactured by Tokyo Rop Mfg Ltd.</td>
</tr>
<tr>
<td>349</td>
<td>Michigan Bridge</td>
<td>Milwaukee</td>
<td>USA, Maine</td>
<td>1997</td>
<td>tendons</td>
<td>Length: 4.9 m; Width: 7.3 m; Manufactured by South Dakota School of Mines</td>
</tr>
<tr>
<td>350</td>
<td>Farming Sithe</td>
<td>Herning</td>
<td>Denmark</td>
<td>1999</td>
<td>tendons</td>
<td>Length: 79.9 m; Width: 3.0 m; en.sta.she.de/structures/index.cfmID=0001469</td>
</tr>
<tr>
<td>351</td>
<td>Parker 1-225 Bridges</td>
<td>Denver</td>
<td>USA, Colorado</td>
<td>2000</td>
<td>tendons</td>
<td>Length: 19.7 m; Width: 11.0 m; Manufactured by Marshall Industries Composites.</td>
</tr>
<tr>
<td>352</td>
<td>Ikoma Island Bridge</td>
<td>Okinawa</td>
<td>Japan</td>
<td>2001</td>
<td>tendons</td>
<td>Length: 37.8 m; Width: 4.0 m;</td>
</tr>
<tr>
<td>353</td>
<td>Route 141 over Willow Creek</td>
<td>Gutten</td>
<td>USA, Iowa</td>
<td>2001</td>
<td>tendons</td>
<td>Length: 64.9 m; Width: 7.9 m; Manufactured by Fiber Reinforced Systems Inc.</td>
</tr>
<tr>
<td>354</td>
<td>Passa Bella de Lomia</td>
<td>Luzon</td>
<td>France</td>
<td>2002</td>
<td>tendons</td>
<td>Manufactured by Softrax, en.sta.she.de/structures/index.cfmID=00014676</td>
</tr>
<tr>
<td>355</td>
<td>I-225 & SH33 Interchange</td>
<td>Aurora</td>
<td>USA, Colorado</td>
<td>2003</td>
<td>tendons</td>
<td>Length: 410.0 m; Width: 12.8 m; Manufactured by Hughes Bros, Inc.</td>
</tr>
</tbody>
</table>

7. CONCLUSION

Fibre Reinforced Polymer Composites, thanks to their beneficial properties and various advantages over traditional materials, have great potential as a material used in bridge engineering. During the last 30 years, they have proved useful in a few areas: they are commonly used to strengthen existing bridge structures; they can replace steel as concrete reinforcement, and traditional materials for structural elements in hybrid and all-composite bridge structures.

They exercise high specific strength and stiffness, a property particularly interesting from the point of view of designers, as it provides the possibility to consider new design concepts and what’s more, enables dead load savings, which is particularly important while retrofitting existing structures by replacing old bridge decks. Their good corrosion resistance, fatigue resistance, electromagnetic transparency and ability to withstand harsh environment make them a good alternative for traditional materials in particular cases, such as...

www.ijlret.com
Lleida Footbridge crossing railway line. Thanks to dimension stability and aesthetic appearance of FRP structural elements, they became popular as components of small- spanned footbridges in National Parks in USA (about 170 of 355 bridges listed in chapter 12) and recently in Moscow parks and train stations. Their light weight, enabling quick assembly without the use of heavy equipment, not only provide cost savings, but also make them preferable to traditional materials as a material for demountable or move able constructions, and in cases where time-savings are crucial, in particular when minimal traffic interruption is allowed.

However, there is a number of uncertainties and disadvantages that prevent from justifying the use of FRP composites instead of traditional materials. Firstly, although the majority of sources (literature) are very optimistic about the long-term durability of FRP materials and predict lower life-cycle costs for constructions made of them, it is not possible to justify the claims, because only a limited number of relevant projects have been built. Much higher initial cost is also a big barrier. The second discouraging issue is the lack of design standards. Works on such standards are said to have been carried away for many years, but they are still far from introducing. The problem seems to be the lack of knowledge on the material: since the properties of FRP composite depend on the quantity and orientation of fibre reinforcement, one cannot separate the design of the material and the design of the structure. As a result, usually the manufacturer has to design both the material and the construction. Finally, mechanical joints adapted from steel constructions are not appropriate for structural elements made of anisotropic FRP and the knowledge on adhesive connections is still too little.

FRP composite can be successfully used as structural elements in particular cases mentioned above, but they are still far from being accepted as a construction material qual to traditional materials. More projects involving FRP composites, especially those involving material-adapted concepts, still needed to verify their long-term cost-saving and in-service durability.

8. REFERENCES

[2]. Tuaat C.: Use of Fiber Reinforced Polymer Composite in Bridge Structures, Massachusetts Institute of Technology, 2005
[12]. www.etchetonics.com
[13]. www.empa.ch/plugin/template/empa/*/55458/*--/l=2
[14]. www.fiberline.com
[15]. www.strongwell.com
[16]. www.bedfordplastics.com
[17]. www.creativepultrusions.com
[18]. www.bbr.com.sg
APPLICATIONS OF FIBRE REINFORCED COMPOSITE POLYMER IN CONSTRUCTIONS

[29]. www.ngcc.org.uk
[30]. www.fhwa.dot.gov