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A B S T R A C T: This paper presents the artificial neural network (ANN) model for predicting the lift coeffi-

cient aerodynamic performance of a NACA 64-210 airfoil in rain conditions. In order to determine the capability 

of the ANN technique on estimating the prediction value for lift coefficient, a wind-tunnel experiment is referred 

to in this study. in the experiment, 75 samples of data concerned with the airfoil lift coefficient in rain are se-

lected. The MATLAB ANN toolbox is employed for the modeling purpose with some justifications. The Le-

venberg-Marquardt (trainlm), mean squared error (MSE), tangent sigmoid (tansig) for feedforward 

back-propagation networks is adopted as the training algorithm, performance and transfer functions, respectively. 

With three nodes in the input layer and one node in the output layer, eight network structures are chosen with 

different numbers of nodes in the hidden layer which are 3-1-1, 3-3-1, 3-6-1, 3-7-1, 3-1-1-1, 3-3-3-1, 3-6-6-1 

and 3-7-7-1 structures. It is found that the 3-7-7-1 network structure gives the best prediction results of the lift 

coefficients of the airfoil in rain conditions. Finally, the effects of rain modeling parameters on the lift coeffi-

cients of the airfoil in rain conditions are discussed through a comparison between the experimental and the best 

3-7-7-1 structure predicted results. 
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1  Introduction 

Aerodynamic penalties of aircraft flight through heavy rain have been deemed to be a critical cause in many 

severe aviation accidents [1]. Heavy rain rate of 1800 mm/h can cause 30% decrease in lift and 20% increase in 

drag and also affect the stall angle, boundary-layer separation, flight safety and maneuverability. Meteorologists 

and aeronautical communities have been interested in rain associated with thunderstorms for decades.  

Totally three approaches have been used to study aerodynamic performance of airfoils and wings in rain en-

vironment, i. e. flight test, wind-tunnel experiment and numerical simulation. Rhode firstly investigated rain 

effects on aircraft flight by wind tunnel test in 1941 [2]. Hermanspann [3], Adams [4] conducted flight tests to 

study rain effects on aircraft. Aerodynamic performance of airfoils [5-6] and wings [7] in rain was investigated 

via wind-tunnel experiments. As computational fluid dynamics (CFD) developed since the middle of 1990s, 

Valentine, et al. [8], Thompson, et al. [9], Ismail, et al. [10-11], Wu, et al. [12-13] simulated aerodynamic effi-

ciency of airfoils and wings in rain by employing numerical simulation approach. Overall, the existing achieve-

ments show that rain can cause severe aerodynamic performance degradation to aircraft, namely decreases in lift 

and lift-to-drag ratio and increases in drag, thus threatens aircraft flight safety especially in a short-duration rain 

encounter. 

Artificial neural networks emulate human functions such as learning from experience, generalizing and ab-

stracting essential characteristics from input containing irrelevant data [14]. A detailed introduction of the de-

velopment history of neural networks can be referred to in Ref. 15. Currently, neural networks have been per-

formed by many governmental, industrial and academic research groups. Greenman, a researcher at NASA 

Ames research center, used neural networks to optimize the aerodynamic configuration of a two-dimensional 

high-lift airfoil [15]. Youssef and Juang used neural network technologies to provide a universal database for the 

storage and processing of flight test aerodynamic data [16]. In the field of effects of adverse weather conditions 

such as icing, neural networks have been applied to determine the potential relationships between ice shapes and 

aerodynamic performance [17].  

With the very limited resources available for the problems involved in this study, i. e. airfoil lift coefficient in 

rain conditions, it is found that no study has yet focused on the issue of applying the ANN technique to predict 

airfoil lift coefficient in rain conditions. This issue could be assumed as the major contribution of this study to 

the area of aerospace engineering. In our study, the ANN technique is firstly employed to find the underlying 

relationships between some key modeling parameters of rain and aerodynamic lift coefficient in rain conditions. 

An understanding of the process of applying the ANN technique to develop the best model for the prediction of 

airfoil lift coefficient in rain conditions is outlined. 
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2  Modeling of lift coefficient in rain 

In the field of aerospace engineering, lift coefficient 
LC  is as defined as follows: 
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                 (1) 

where L is the lift,
a and u

are air density and free stream velocity, c is the airfoil chord length. 

There are many factors determining the characteristics of rain which in turn affect the airfoil lift coefficient in 

rain conditions, such as raindrop diameter, rain intensity, terminal velocity of raindrop. 

Marshall and Palmer developed the classic formula of the drop size distribution of thunderstorm rain based 

on massive experimental data [18], which can be expressed as follows. 

     
max0 exp    0p p p pN D N ID D D       (2) 

where  pN D (m
-3

mm
-1

) is the number density of raindrops of diameter
pD  (mm) per cubic meter of air,

maxpD is 

the maximum drop diameter.
0N and I (mm

-1
) are parameters of  pN D and have different values for different 

types of rain. For thunderstorm-type heavy rainfall as involved in our study, I varies with rainfall rate R 

as 0.213.0I R  , and
0N has the constant value

0 1400N  m
-3

mm
-1

 [19] . 

In experimental and numerical simulations, the rainfall rate (R) in millimeter per hour or the Liquid Water 
Content (LWC) in gram per cubic meter has been chosen to categorize different intensities of rainfall. A rainfall 
of rate of 100 mm/h or greater is often considered heavy rain. The correlation of the two factors depends on the 
type of rainfall. Multiplying the raindrop size distribution given by Eq. (2) by the raindrop mass and then inte-

grating over the range of drop diameters will result in the relationship between  (g/m
3
) and  (mm/h) for thun-

derstorm type rain [6] 
0.840.054LWC R               (3) 

It is assumed that raindrops have been with uniform velocity (i.e. without acceleration) before hitting the air-

craft surface. So it is important to determine the terminal velocity (
TV ) of raindrops. It was developed by Mar-

kowitz [20] as  
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     (4) 

 

3  Justification of ANN for CL modeling 
Although the application of the ANN model is widely utilized in various areas including aerospace engineer-

ing, there have been no clear rules that can serve as a basis to follow in producing a perfect model, the only way 

to obtain a successful model of ANN is by trial and error with consideration of some key factors. Due to this fact, 

this study considers the factors that can affect the effectiveness of the ANN model including the following five-

fold: 

 Network architecture. 

 Network algorithm. 

 Transfer function. 

 Training function. 

 Learning function. 

 Performance function. 

 Number of training data. 

 Number of testing data. 

 Normalization of input data. 

 Anti-normalization of output data. 

  

3.1  Network structure 

An ANN structure or architecture usually consists of nodes and layers. Nodes are also called neurons. Layers 

usually include an input layer, one or more hidden layers and an output layer. An illustration of an ANN network 

with nodes and layers for our study is given in Fig. 1. It is worth mentioning that it is possible for an ANN ar-

chitecture with no hidden layers. The network architecture has three nodes in the input layer which are dynamic 

pressure (q), liquid water content (LWC) and angle of attack (α), i nodes in the first hidden layer, j nodes in the 

second hidden layer, k nodes in the Nth hidden layer and one node, the output lift coefficient LC


in the output 
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layer. The example network in Fig. 1 can be defined as a 3-i-j-k-1 structure. 

It is common sense that a network with more hidden layers and more nodes in each hidden layer can usually 

acquire a better prediction result but at the same time, more training and testing time and larger computer mem-

ories will be required. Too many nodes in hidden layers will lead to a waste of computer memory and computa-

tion time, while too few may not provide an ideal control effect [21]. The process of trial and error basis to ob-

tain the best result is carried out by adjusting the number of hidden layers and the number of nodes in each hid-

den layer. Zhang, et al. [22] recommended that the number of nodes for the hidden layer are “n/2”, “n”, “2n” and 

“2n+1” where n denotes the number of nodes in the input layer. Since there are three input variables in this study, 

the number of nodes in each hidden layer according to Zhang, et al. are (3)/2=1.5≈1, 3, 2×3=6 and 2×3+1=7. 

Besides, with consideration of both computation expense and control effect, the trial and error process is limited 

with two hidden layers. Thus, eight network structures are applied in the current study, namely, 3-1-1, 3-3-1, 

3-6-1, 3-7-1 for the network with a single hidden layer and 3-1-1-1, 3-3-3-1, 3-6-6-1, 3-7-7-1 for the network 

with two hidden layers, as illustrated in Fig. 2 and 3. 

 
Fig. 1 Illustration of an ANN network architecture with nodes and layers in this study. 

 

3.2  Amount of training and testing data 

The amount of training and testing data for a network is a necessary consideration for all researchers. An in-

crease in the amount of training and testing data will increase the chance of obtaining a more accurate model. In 

aerospace engineering, the actual experimental data are often used for network training. In this study, the 

wind-tunnel experimental data for the NACA 64-210 cruise configuration airfoil by Bezos, et al. [6] is adopted 

for the training of the eight networks. In Bezos’s report, there are six groups with different experimental condi-

tions for the NACA 64-210 cruise configuration airfoil, and the total number of sample size is 75.  

 

3.3  Ratio of training and testing data 

A desired network should be reached through both of the process of training and testing. For a set of sample 

data, usually a fraction of them is separated for training the network and the rest for testing. Basically, there is 

no general guideline to be followed to decide the ratio between the amounts of training and testing sample data. 

In other words, the ratio is often self-determined, as long as the amount of training samples is more than that of 

testing samples [23]. Percentwise, recommended ratios of training and testing samples given by Zhang, et al. [22] 

are 80%:20%, 85%:15% and 90%:10% with a total of 100% for the ratio of the available experimental samples. 

To fit with the experimental sample size of 75, the recommended amounts of training and testing samples are as 

follows: 

(1) 75×80%+2=62 training samples, 

(2) 75×20%-2=13 testing samples. 

As is given in Table 1 for the normalized values of the ANN inputs and targets for training and testing, the 

total samples are separated into two groups as follows: 

(1) samples No. 1 to No. 62 being selected for training, 

(2) samples No. 63 to No. 75 being selected for testing. 

 

3.4  Normalization of input data and anti-normalization of output data 

Basically, when nonlinear transfer functions such as the logistic sigmoid function or hyperbolic tangent sig-

moid function are used in the hidden layers, the input variables are in the interval of (-∞, +∞) and the output 

variables in the interval of (-1, 1). In fact, the output can not necessarily be only in the interval of (-1, 1). When 

the absolute values of input variables are greater than a certain level, the output values will change slightly and 

the learning efficiency becomes very low, causing difficulty in convergence. Therefore, the input data are often 

limited to a certain range in order to avoid the aforementioned bad circumstances. In other words, the input 

sample data need to be normalized.  
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There are many ways to normalize the raw data of input, such as those given by Ezugwu, et al. [24] and San-

jay and Jyothi [25]. These approaches for normalization of data are somewhat complex for processing data. To 

simplify the data processing, a simple method is addressed here. With reference to the ranges of values of the 

input variables of q, LWC and α and the target variable T  (experimental CL), the normalization formulas are as 

follows: 

 
Fig. 2 Network structures with one hidden layer. 

 
Fig. 3 Network structures with two hidden layers. 
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/100qI q                 (5) 

/100LWCI LWC              (6) 

/100I                  (7) 

The normalized values of the ANN inputs and targets are as listed in Table 1. When the optimal network is 

determined, the test samples will be set as the input to get the predicted results. For a direct comparison between 

the predicted results and the testing sample data (experimental), the predicted results 
LC


 are usually an-

ti-normalized from the network output 
LCO , which is given by 

10
LL CC O



               (8) 

Table 1. Values of the normalized ANN inputs and the non-normalized targets. 

No. 
qI  

LWCI  I  T   No. 
qI  

LWCI  I  T  

1 

0.3 0 0 0.162 

 39 

0.3 0.39 

0.200

2 0.823 

2 0.3 0 0.0203 0.336  40 0.5 0 0 0.161 

3 

0.3 0 0.0404 0.508 

 41 

0.5 0 

0.020

1 0.338 

4 

0.3 0 0.0609 0.680 

 42 

0.5 0 

0.040

0 0.511 

5 

0.3 0 0.0806 0.840 

 43 

0.5 0 

0.060

0 0.684 

6 

0.3 0 0.1002 1.003 

 44 

0.5 0 

0.080

8 0.858 

7 

0.3 0 0.1201 1.145 

 45 

0.5 0 

0.100

8 1.018 

8 

0.3 0 0.1300 1.207 

 46 

0.5 0 

0.120

8 1.160 

9 

0.3 0 0.1403 1.165 

 47 

0.5 0 

0.130

4 1.211 

10 

0.3 0 0.1509 1.121 

 48 

0.5 0 

0.140

5 1.156 

11 

0.3 0 0.1609 1.080 

 49 

0.5 0 

0.150

9 1.114 

12 

0.3 0 0.1802 1.076 

 50 

0.5 0 

0.160

4 1.102 

13 

0.3 0 0.2006 1.036 

 51 

0.5 0 

0.181

0 1.063 

14 

0.3 0.25 0 0.155 

 52 

0.5 0 

0.200

6 0.973 

15 0.3 0.25 0.0207 0.326  53 0.5 0.19 0 0.160 

16 

0.3 0.25 0.0403 0.484 

 54 

0.5 0.19 

0.020

1 0.326 

17 

0.3 0.25 0.0608 0.658 

 55 

0.5 0.19 

0.040

2 0.492 

18 

0.3 0.25 0.0812 0.812 

 56 

0.5 0.19 

0.060

1 0.659 

19 

0.3 0.25 0.1009 0.952 

 57 

0.5 0.19 

0.080

3 0.818 

20 

0.3 0.25 0.1205 1.064 

 58 

0.5 0.19 

0.100

9 0.952 

21 

0.3 0.25 0.1300 1.101 

 59 

0.5 0.19 

0.120

4 1.046 

22 

0.3 0.25 0.1402 1.073 

 60 

0.5 0.19 

0.130

2 1.065 

23 

0.3 0.25 0.1505 1.020 

 61 

0.5 0.19 

0.139

9 1.031 

24 

0.3 0.25 0.1606 1.030 

 62 

0.5 0.19 

0.149

9 0.964 

25 0.3 0.25 0.1800 0.949       
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26 0.3 0.25 0.2006 0.894  63 0.5 0.3 0 0.153 

27 

0.3 0.39 0.0004 0.146 

 64 

0.5 0.3 

0.020

4 0.325 

28 

0.3 0.39 0.0205 0.315 

 65 

0.5 0.3 

0.040

3 0.485 

29 

0.3 0.39 0.0401 0.478 

 66 

0.5 0.3 

0.060

2 0.647 

30 

0.3 0.39 0.0607 0.639 

 67 

0.5 0.3 

0.080

2 0.799 

31 

0.3 0.39 0.0804 0.793 

 68 

0.5 0.3 

0.100

2 0.915 

32 

0.3 0.39 0.1005 0.928 

 69 

0.5 0.3 

0.120

7 1.010 

33 

0.3 0.39 0.1206 1.023 

 70 

0.5 0.3 

0.130

7 0.995 

34 

0.3 0.39 0.1306 1.061 

 71 

0.5 0.3 

0.139

9 0.965 

35 

0.3 0.39 0.1402 1.024 

 72 

0.5 0.3 

0.150

0 0.941 

36 

0.3 0.39 0.1500 0.942 

 73 

0.5 0.3 

0.160

3 0.920 

37 

0.3 0.39 0.1604 0.923 

 74 

0.5 0.3 

0.180

7 0.857 

38 

0.3 0.39 0.1804 0.868 

 75 

0.5 0.3 

0.201

7 0.805 

 

3.5  Network algorithm 

There are many network algorithms developed by researchers. In practical utilization of ANN network, 

back-propagation (BP) network algorithm or its varied forms are adopted in 80%-90% of ANN network models, 

thus the feedforward BP algorithm is adopted in the present study. But here the BP algorithm that we use is an 

improved BP algorithm named Levenberg-Marquardt (L-M algorithm) that will be depicted in the following 

subsection in detail. Generally, a feedforward network based on BP algorithm is an architecture consisting of 

one or more hidden layers located between the input and output layers. A typical feedforward network model 

with one hidden layer is as shown in Fig. 4. Every layer has both weights and biases for information transfer 

except the input layer. Now we proceed to derive the BP algorithm based on the feedforward network with one 

hidden layer in Fig. 4. 

 
Fig. 4 A typical feedforward network with a single hidden layer. 

 

3.5.1 Feedforward of layer information 

As shown in Fig. 4, assume that the input vector is P, and there are r input neurons, s1 neurons in the hidden 

layer and the transfer function from the input layer to the hidden layer is 1f . Moreover, there are s2 neurons in 

the output layer, the corresponding transfer function is 2f , the output vector is A and the target vector is T. 

The net input to the output of node i in the hidden layer is expressed in Eq. (9), 
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1

1 1( 1 1 )
r

i ij j i

j

a f w p b


             (9) 

Where 
jp  is the jth node of the input vector P, 1ijw  is the weight between the jth input neuron and the ith 

hidden neuron, 1ib  is the bias on the ith hidden node and 1ia  is the output of the ith hidden node. 

The output of the kth neuron in the output layer is 
1

1

2 2( 2 1 2 )
s

k ki i k

i

a f w a b


           (10) 

where the parameters in the above equation can be easily deduced by referring to Eq. (9). 

There are several transfer functions that could be used in MATLAB Neural Network Toolbox, such as hard 

limit transfer function (hardlim), linear transfer function (purelin), hyperbolic tangent sigmoid transfer function 

(tansig) and log-sigmoid transfer function (logsig). The hardlim transfer functions can only resolve simple clas-

sification problems, the purelin transfer function can well resolve linear problems, the last two sigmoid transfer 

functions are applied to nonlinear systems. In view of the strong nonlinearity in the current research system, 

only the sigmoid transfer functions can be utilized in our study. And the tansig transfer function is selected here 

due to its better computational accuracy in practice. The expression of the tansig transfer function is given in Eq. 

(11) as, 
2

2

1

1

n

n

e
f

e









                (11) 

where n can be either the net of hidden nodes or the net of output nodes. 

The error function that we use is called mean squared error (MSE) which is defined as follows, 

2

1

1
( 2 )

N

k k

k

MSE t a
N 

              (12) 

where 
kt  is the target value of the kth output node. 

 

3.5.2 Training algorithm 

There are many training algorithms in the MATLAB Neural Network Toolbox, such as the standard Gra-
dient-Descent algorithm, Variable Learning Rate algorithm (traingda, traingdx), Resilient Backpropagation al-
gorithm (trainrp), Conjugate Gradient Algorithms (traincgf, traincgp, etc), Quasi-Newton Algorithms (trainbfg, 
trainoss), Levenberg-Marquardt algorithm (trainlm). The standard Gradient-Descent algorithm has some inhe-
rent shortcomings like long training time, potential slow adjustment of weights and biases and obtaining local 
minimal values of weights and biases. In addition, the Quasi-Newton Algorithms need to calculate the Hessian 
matrix (second derivatives) of the performance index at the current values of the weights and biases, which is 
complex and expensive to compute for feedforward neural networks. In our study, the Levenberg-Marquardt 
(L-M algorithm) is selected for network training. It has been widely used in engineering applications [26]. 

The L-M algorithm is a combination of the Gradient-Descent algorithm and the Quasi-Newton algorithms, 
which was designed to approach second-order training speed without having to compute the Hessian matrix. The 
L-M algorithm can be written as 

1

1 [ ]T T

k kX X J J I J E 

             (13) 

where 
kX  is a vector consisting of all the weights and biases in the network, J  is the Jacobian matrix that 

contains first derivatives of the network errors with respect to the weights and biases [27], E  is a vector of 
network errors, I  is the unit matrix.   is a scalar, when it equals zero, Eq. (13) becomes the Newton’s me-

thod using the approximate Hessian matrix TH J J  and when it is large, Eq. (13) becomes the Gra-

dient-Descent method with a small step size. 
 

4  Determination of the best ANN model 

The modeling results of LC


 and the MSE values of LC


 are generated by using the MATLAB Neural 

Network Toolbox with the learning rate of 0.01 and the initial values of all weights and biases of 0.1. With a 

total of 60 training samples, the modeling results of the LC


 training phase are presented in Table 2. To deter-

mine the best network structure of the ANN prediction model, the two criteria considered in [23] are adopted in 

this work. The first criterion is the line pattern between the target values of lift coefficient T  and the ANN 

output values LC


 of the training phase. The second criterion is the consideration of the smallest value for the 

absolute average value of MSE of the testing phase to determine which network structure gives the best predic-

tion for lift coefficient of the NACA 64-210 in rain.  

In reference to the first criterion, the line patterns of the data between the ANN targets and outputs of the 
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training sample set is shown in Fig. 5 and Fig. 6 for the single-hidden-layer networks and two-hidden-layer 

networks, separately. The two graphs are generated by using the predicted values of 
LC


 of all ANN structures 

in the training set listed in Table 2. It can be concluded that two network structures have the best similar form of 

line pattern between the targets lift coefficient T  and the network predicted outputs 
LC


, which are the 3-7-1 

and 3-7-7-1 network structures. You may take it for granted that these networkstructures with more hidden 

nodes can always predict more accurate line patterns as is the same as the conclusion in the present work, how-

ever, Ref. 26 derived the conclusion that the 3-1-1-1 uncoated structure has the best similar form of line pattern 

of all the 8 uncoated structures and so do the 3-1-1 TiAIN coated and 3-1-1 SNTR coated structures. Therefore, 

our work is not vain and has its value. In terms of the second criterion, The MSE values of the 
LC


 testing  

Table 2. Predicted values of lift coefficient 
LC


 of all the ANN structures in the training phase. 

No. LC


 

3-1-1 3-3-1 3-6-1 3-7-1 3-1-1-1 3-3-3-1 3-6-6-1 3-7-7-1 

1 0.202 0.207 0.158 0.166 0.179 0.165 0.166 0.160 

2 0.326 0.338 0.340 0.340 0.338 0.337 0.336 0.337 

3 0.494 0.505 0.510 0.504 0.524 0.506 0.505 0.512 

4 0.689 0.691 0.674 0.672 0.681 0.682 0.676 0.680 

5 0.870 0.864 0.835 0.845 0.833 0.846 0.842 0.834 

6 1.016 1.011 1.011 1.018 1.006 0.998 1.009 1.010 

7 1.114 1.115 1.155 1.145 1.143 1.151 1.148 1.152 

8 1.142 1.144 1.181 1.171 1.175 1.175 1.175 1.172 

9 1.157 1.155 1.170 1.166 1.178 1.164 1.168 1.161 

10 1.159 1.144 1.133 1.135 1.158 1.136 1.137 1.135 

11 1.148 1.113 1.094 1.097 1.127 1.106 1.104 1.107 

12 1.100 1.075 1.052 1.068 1.070 1.058 1.061 1.062 

13 1.017 1.060 1.054 1.034 1.025 1.040 1.034 1.032 

14 0.150 0.143 0.158 0.149 0.138 0.157 0.154 0.159 

15 0.300 0.303 0.331 0.327 0.325 0.323 0.327 0.322 

16 0.479 0.480 0.491 0.485 0.494 0.484 0.489 0.488 

17 0.673 0.669 0.651 0.646 0.643 0.656 0.652 0.656 

18 0.847 0.842 0.808 0.813 0.814 0.815 0.814 0.806 

19 0.970 0.973 0.962 0.969 0.981 0.953 0.967 0.959 

20 1.040 1.052 1.073 1.074 1.074 1.081 1.077 1.079 

21 1.055 1.066 1.086 1.089 1.080 1.092 1.089 1.091 

22 1.059 1.062 1.071 1.076 1.064 1.072 1.071 1.074 

23 1.049 1.036 1.035 1.039 1.033 1.038 1.035 1.039 

24 1.029 0.990 0.996 0.995 1.000 1.002 0.998 1.001 

25 0.966 0.935 0.936 0.952 0.951 0.942 0.947 0.942 

26 0.871 0.882 0.895 0.903 0.894 0.907 0.907 0.906 

27 0.128 0.118 0.145 0.147 0.125 0.149 0.149 0.150 

28 0.286 0.286 0.315 0.321 0.312 0.313 0.318 0.310 

29 0.468 0.468 0.481 0.478 0.472 0.474 0.477 0.478 

30 0.663 0.660 0.645 0.636 0.624 0.647 0.638 0.648 

31 0.821 0.823 0.790 0.788 0.794 0.793 0.788 0.786 

32 0.936 0.950 0.932 0.935 0.956 0.922 0.935 0.925 

33 0.994 1.019 1.027 1.028 1.025 1.036 1.032 1.032 

34 1.002 1.027 1.033 1.035 1.018 1.037 1.036 1.038 

35 0.999 1.016 1.014 1.015 0.995 1.011 1.012 1.014 

36 0.985 0.986 0.979 0.974 0.963 0.974 0.974 0.974 

37 0.960 0.933 0.937 0.922 0.930 0.932 0.932 0.928 

38 0.887 0.879 0.868 0.868 0.885 0.861 0.868 0.858 

39 0.790 0.822 0.820 0.817 0.814 0.819 0.816 0.822 

40 0.193 0.182 0.161 0.155 0.173 0.158 0.157 0.166 

41 0.326 0.325 0.340 0.348 0.345 0.333 0.338 0.335 

42 0.499 0.499 0.510 0.510 0.526 0.508 0.513 0.510 

43 0.690 0.687 0.675 0.670 0.676 0.687 0.684 0.686 

44 0.876 0.874 0.850 0.856 0.840 0.862 0.861 0.855 



Prediction of airfoil lift coefficient in rain conditions using artificial neural network 

www.ijlret.com                              83 | Page 

45 1.015 1.024 1.028 1.039 1.014 1.027 1.032 1.021 

46 1.101 1.125 1.160 1.163 1.131 1.170 1.164 1.162 

47 1.122 1.149 1.178 1.181 1.149 1.185 1.184 1.184 

48 1.131 1.154 1.166 1.167 1.141 1.169 1.169 1.173 

49 1.128 1.136 1.135 1.130 1.115 1.137 1.130 1.138 

50 1.114 1.099 1.102 1.092 1.085 1.102 1.092 1.100 

51 1.055 1.064 1.042 1.062 1.030 1.030 1.032 1.028 

52 0.969 0.963 0.978 0.973 0.984 0.983 0.994 0.990 

53 0.157 0.155 0.158 0.149 0.147 0.164 0.161 0.161 

54 0.306 0.309 0.332 0.343 0.332 0.331 0.334 0.322 

55 0.490 0.488 0.501 0.501 0.503 0.498 0.499 0.496 

56 0.679 0.671 0.659 0.648 0.649 0.660 0.652 0.664 

57 0.849 0.841 0.811 0.807 0.818 0.806 0.804 0.813 

58 0.975 0.975 0.963 0.965 0.989 0.947 0.955 0.954 

59 1.040 1.046 1.053 1.052 1.070 1.055 1.051 1.053 

60 1.053 1.054 1.053 1.053 1.071 1.053 1.055 1.057 

61 1.054 1.040 1.024 1.024 1.052 1.024 1.027 1.025 

62 1.043 1.003 0.975 0.973 1.022 0.981 0.978 0.969 

Table 3. Differences between the targets T and predicted 
LC


 of all the ANN structures in the testing phase. 

No. 
T -

LC


 

3-1-1 3-3-1 3-6-1 3-7-1 3-1-1-1 3-3-3-1 3-6-6-1 3-7-7-1 

63 0.019 0.021 0.017 0.018 0.029 0.004 0.016 0.020 
64 -0.014 -0.009 -0.008 -0.008 -0.009 0.027 0.031 -0.001 
65 -0.034 -0.029 -0.025 -0.025 -0.032 0.012 0.016 -0.019 
66 -0.029 -0.023 -0.019 -0.019 -0.027 -0.002 0.001 -0.016 
67 -0.004 0.001 0.004 0.004 -0.003 0.001 0.003 0.005 
68 0.018 0.021 0.023 0.023 0.019 0.012 0.011 0.023 
69 0.055 0.056 0.055 0.055 0.056 0.052 0.048 0.057 
70 0.026 0.026 0.025 0.025 0.027 0.029 0.023 0.028 
71 -0.008 -0.009 -0.010 -0.010 -0.007 0.001 -0.007 -0.006 
72 -0.026 -0.028 -0.029 -0.029 -0.025 -0.011 -0.020 -0.024 
73 -0.031 -0.033 -0.034 -0.034 -0.030 -0.011 -0.021 -0.028 
74 -0.031 -0.031 -0.03 -0.03 -0.029 -0.010 -0.018 -0.025 
75 0.024 0.031 0.038 0.037 0.025 0.024 0.024 0.034 

MSE×10
-4 

7.622 7.666 7.683 7.690 7.653 4.226 4.773 6.667 

 
Fig. 5 Predicted lift coefficients of single-hidden-layer structures. 
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Fig. 6 Predicted lift coefficients of double-hidden-layer structures. 

phase are presented in Table 3. It is clear that the 3-7-7-1 network structure has a lower MSE value of 6.667e-4 

of the two best models. Thus, the 3-7-7-1 network structure is determined as the best model to predict lift coef-

ficients of the NACA 64-210 airfoil in rain. 

 

5  Analysis of the effects of rain modeling parameters on airfoil lift coefficients 
The effects of LWC on the NACA 64-210 airfoil lift coefficients and the corresponding 3-7-7-1 ANN predic-

tion results are as shown in Fig. 7 and Fig. 8 for q=30 and 50 psf, respectively. It can be seen from the two fig-
ures that relatively accurately fit the experimental data, especially at the relatively low angles of attack where the 
lift coefficient and angle of attack present a linear relationship. The maximum lift coefficient and the slope of 
the lift curve significantly decrease as LWC increases, which implies that the heavier the rain is, the more severe 
the aerodynamic lift penalty will be. In Fig. 7 where q=30 psf, the largest absolute decreases of lift coefficient 
occur at the largest angle of attack 20 degree, which are 0.142 and 0.213 for the experimental results at LWC 25 
and 39 g/m

3
, respectively, along with 0.126 and 0.210 for the ANN prediction results at LWC 25 and 39 g/m

3
, 

respectively. And in Fig. 8 where q=50 psf, the largest absolute decreases of lift coefficient are 0.150 and 0.206 
for the experimental results at LWC 19 and 30 g/m

3
, respectively, along with 0.169 and 0.209 for the ANN pre-

diction results at LWC 19 and 30 g/m
3
, respectively. 

The effects of dynamic pressure q on the NACA 64-210 airfoil lift coefficients and the corresponding 3-7-7-1 
ANN prediction results are as shown in Fig. 9 and Fig. 10 for LWC=0 and 30 g/m

3
, respectively. It can be seen 

that in the dry condition (no rain), the lift coefficients of the airfoil are nearly unaffected by dynamic pressure. 
However, in the rain condition of LWC 30 g/m

3
, the lift characteristics at high angles of attack above 8 degree 

are dramatically changed by dynamic pressure. Moreover, it can be seen that at low angles of attack below 8 
degree (including 8 degree), lift coefficients keep little changed at each angle of attack in both dynamic pressure 
conditions, while at angles of attack above 8 degree, lift coefficients decrease at each angle of attack as the dy-
namic pressure increases. This is a new and interesting phenomenon that has not been detected by predecessors 
in this field. It may be due to the physics that as the dynamic pressure or equally the free-stream velocity in-
creases, trailing-edge flow separation at high angles of attack occurs or becomes more severe in the higher dy-
namic pressure condition, causing decreases in the lift coefficients. It can be concluded from this perspective 
that it is more advisable to conduct both experiment and numerical simulation of rain at low dynamic pressure 
conditions where lift characteristics are not greatly affected. 
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Fig. 7 Effects of LWC on the airfoil lift coefficients (q=30 psf). 

 
Fig. 8 Effects of LWC on the airfoil lift coefficients (q=50 psf). 

 
Fig. 9 Effects of q on the airfoil lift coefficients (LWC =0 g/m3). 
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Fig. 10 Effects of q on the airfoil lift coefficients (LWC =30 g/m3). 

 

6  Conclusion 
In this paper, a review of the current rain research situation and the ANN technique used in the field of aero-

space engineering is presented. Considering that no study available has yet focused on the field of rain, it can be 

thought that this is the first attempt for the ANN technique to be used in the field of predicting lift coefficients of 

airfoil in rain conditions. Our object is to afford a new application area of the ANN technology as well as a new 

approach to study aerodynamic performance of airfoil in rain. 

An important issue of concern in our work is the basic idea of ANN to be used for modeling lift coefficient in 

rain. In our viewpoint, the basic idea belongs to the understanding of the network structure of ANN. It is an im-

portant way of thinking for researchers to decide the number of layers and nodes in the hidden layers by trial 

and error to get a good prediction of the research object of interest. In our study, eight different network struc-

tures are selected for modeling based on literature recommendations, which are 3-1-1, 3-3-1, 3-6-1, 3-7-1, 

3-1-1-1, 3-3-3-1, 3-6-6-1 and 3-7-7-1. Totally, seventy-five models are developed with the eight structures being 

applied to each model. It is found that the 3-7-7-1 structure gives the best prediction results of lift coefficient of 

the airfoil in rain conditions. 

After having determined the best structure for predicting, a discussion of the effects of rain modeling para-

meters, LWC and dynamic pressure q, on the airfoil lift coefficient in rain are presented with data from both 

wind-tunnel experiment and the best ANN prediction structure. Some new phenomena are discovered and some 

new conclusions are drawn as to the lift performance of airfoil in rain conditions. 

To conclude, this study is concerned about the artificial neural network technique for the model establishment 

to predict the values of lift coefficients of airfoil in rain conditions. It is called the modeling phase of the predic-

tion of lift coefficients in rain which is important for providing the basic model for the foundation of the objec-

tive function. Considering that advantages of the ANN technique compared to wind-tunnel experiment are sim-

plicity, speed, low cost, low risks, and capacity of learning, the ANN is a powerful tool in predicting the lift 

coefficients of airfoils in rain conditions. 
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