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Abstract: The application of real options and fuzzy real options to renewable energy investment decisions is 

explored in the context of the valuation of three urban rooftop solar projects. Four real options methods were 

used to analyse the abandonment option present within these projects. Two of these methods, Fuzzy Black-

Scholes and Fuzzy Binomial, used fuzzy numbers for the cashflow and salvage inputs. The resulting European 

put valuations for the option to sell the projects off for salvagewere consistent across the various techniques, 

including both classical and fuzzy. The real options present within the solar projects consistently added value to 

the adjusted net present values of the projects, which should improve their investment prospects. Additionally, 

we discuss the role of using fuzzy options pricing techniques as opposed to traditional real options and their 

usefulness to the practitioner.  

 
1. Context

1
 

In response to rising pressure from growing urban populations and their demands on infrastructure, 

significant investment is needed forthe development of urban energy systems(Townsend 2013).However, 

innovative renewable energy and energy efficiency (referred to hereafter as ―smart energy‖) projects still have 

difficulty in raising capital(Merk et al. 2012; OECD 2015). These types of projects are susceptible to policy 

risks which can make potential investors reluctant to invest in energy infrastructure (Foxon et al. 2005; Mitchell 

et al. 2006). One key approach towards encouraging investment in smart energy projects is appropriate project 

valuation, especially where there is risk and flexibility present. 

Smart energy projects are traditionally assessed by using the Net Present Value (NPV) technique, 

which is based on Discounted Cash Flow (DCF) analysis (Brealey et al. 2011). However, this type of analysis 

has a tendency to undervalue projects that require long timeframes or which have managerial flexibility in their 

executions (Amram and Kulatilaka 1998), such as smart energy infrastructure projects(OFGEM 2012). As stated 

by Fernandes et al. (2011), ―Traditional evaluation models relying mainly on discounted cash-flows fail to 

assess the strategic dimension of [renewable energy] investments and do not allow for properly dealing with the 

risk and uncertainty of these particular projects.‖ NPV has the disadvantage that it requires ―the assumption of 

perfect certainty of project cash flows.‖ (Miller & Park 2002), and the use of NPV has important consequences 

when valuing long term projects, which would include many energy infrastructure projects, ―such that the far 

future may appear worthless‖ (Aspinall et al. 2015). Copeland and Antikarov (2003) assert that NPV 

―systematically undervalues every project‖ due to the fact that ―it fails to capture the value of flexibility.‖ 
As a result, some even go so far as to declare the use of NPV in environmental decision making as invalid and 

unethical (Robinson 1996). 

In reality, most projects have many options available, such as the option to delay the start of the project, 

the option to expand, and the option to abandon. In order to address the shortcomings of traditional project 

valuation, Real Options Valuation (ROV) allows the elements of project flexibility and uncertainty to be 

factored into the project valuation by modelling them after financial options, namely calls (options to expand) 

and puts (options to contract) (Trigeorgis 1996).  Therefore, well-established financial option pricing techniques, 

such as Black-Scholes(Black & Scholes 1973) or Cox Ross Rubinstein (CRR) Binomial Trees(Cox et al. 1979), 

can be applied to determine the value of project flexibility, which can then be used to enhance the expected 

value of the project. 

                                                 
1
 Abbreviations:   

ROV = Real Options Valuation 

 FROV = Fuzzy Real Options Valuation 

 NPV = Net Present Value 

 DCF = Discounted Cash Flow 

 FIT = Feed-in-Tariff 
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However, while ROV captures uncertainty in project cashflows and options, the financial options 

valuation techniques still have the drawback of requiring quite precise input parameters, and real options values 

can be sensitive to small changes in the underlying inputs.(Dixit & Pindyck 1994)In order to overcome these 

limitations, the use of fuzzy options valuation techniques has been proposed as a way to value real options when 

inputs like cashflow forecasts are less precise (Wang & Hwang 2007).In fuzzy real option analysis, instead ofthe 

inputs having one specific value, they are formed of a range of values in order to model the natural uncertainties 

that may arise in cashflow or other parameters.  The motivation behind fuzzy real options is ultimately to 

provide the user with a practical means of handling project uncertainty and forecasting future cash flows arising 

from the value of such options.As stated by Collan et al. (2009), ―This means that fuzzy sets can be used to 

formalize inaccuracy that exists in human decision making.‖ In the domain of smart energy infrastructure,which 

is subject to various uncertainties such as price and policy risk, this is characteristic is important, because when 

it comes to investing in renewable energy projects, ―getting the numbers right […] is far from simple‖ (Abadie 

and Chamorro 2014). 

 
2. Objectives 

Against this background, the main aim of this work is to explore the application of fuzzy real options 

analysis to urban renewable energy infrastructure. In so doing, a the use of real options models will be explored, 

focusing in particular on their use of fuzzy numbers to capture the value of real options under the presence of 

uncertainty. The classical (non-fuzzy) Black-Scholes and CRR models will be compared with the fuzzy Black-

Scholes and fuzzy CRR models in order to determine whether real options can be used to improve smart energy 

investment valuation, and also to evaluate their consistency and ease of use.  

We will apply Real Options Valuation (ROV) and Fuzzy Real Options Valuation (FROV) to three 

rooftop solar projects in London in order to determine whether the additionality of project flexibility adds to the 

overall value of the projects.  To this end, three projects(Brixton Energy 2012a; Brixton Energy 2012b; Brixton 

Energy 2013) had their proposed initial investments and potential cashflowsanalysed using Discounted Cash 

Flow(DCF) in order to establish their nominal NPV. These inputs were used to feed into the ROV and FROV 

pricing models so that the resulting option prices could be compared for consistency, and in order to investigate 

whether adding additional flexibility to the inputs in the form of ―fuzziness‖ returned results consistent with 

non-fuzzy ROV models.  

The analysis continues in Section 3 with a literature review and survey of the relevant theoretical and 

practical works underpinning the models used here. Section 4 sets out a detailed description of our case study of 

rooftop solar projects, and the methodology for our real options analysis of these case studies is discussed in 

Section 5. The results of the solar projects analysis are presented in Section 6, followed by a critique of the 

usability of fuzzy real options in Section 7. Section 8 presents our final conclusions. 

 
3. Literature Review 

 Fernandes et al. (2011)presents a review the application of real options analysis to investments in non-

renewable and renewable energy sources thus demonstrating the positive impacts of ROV on assessing these 

types of projects.We focus on real options as applied to renewable energy (RE) investments, because the case 

study that this work focuses on is based on solar power generation, however most existing literature on the 

application to RE investments applies to wind and hydropower. 

 Zeng et al. (2015) explores the application of ROV to solar projects that generate part of their income 

from renewable energy credits (REC), which are subject to their own price uncertainty.  This paper implements 

a Monte Carlo simulation and optimization method based on approximate dynamic programming to solve their 

real options model to determine the optimal time for buyback of third-party owned generating assets.  This 

paper does not focus on overall project valuation, but rather on decision timing, and the only source of 

uncertainty in the model are REC prices.  

 Venetsanos et al. (2002) applies real options valuation to renewable energy generation in the form of a 

wind farm.  This approach used the Black-Scholes options pricing model, and found that for their wind farm 

business case, the ROV-enhanced NPV was greater than the traditional NPV.Boomsma et al. (2012) use real 

options to investigate the effects of different renewable energy support schemes, such as feed-in-tariffs and 

renewable certificate trading, on wind farm investments. This paper compared different RE support schemes, 

and accounts for uncertainty in capital costs, electricity prices, and subsidies. They used a least-squares Monte 

Carlo options pricing model and used the option values to determine optimal time to investment and also 

optimal RE support schemes, finding that feed-in-tariffs encourage earlier investment.  Similarly, Abadie and 

Chamorro (2014)explore the valuation of the option to delay an irreversible investment in wind energy in a 

decentralised, deregulated energy market setting under various RE support schemes. Their approach uses mean 
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reverting trinomial and binomial lattice options pricing models and considers uncertainties in electricity prices, 

wind load, and renewable credit prices. They found that initial one-off subsidies have a stronger effect than 

ongoing mechanisms like feed-in-tariffs.Finally, Min et al. (2011) performed an analytic analysis of optimal 

entry and exit times for renewable generation assets by considering operations and maintenance (O&M) costs as 

the primary source of cost uncertainty.  Their work assumes that the O&M costs follow a geometric Brownian 

motion (GBM) process, and models the problem as an optimal stopping problem, or an abandonment option. 

 Monjas-Barroso and Balibrea-Iniesta (2013)also investigate wind projects with real options present 

from policy frameworks in three European countries using both Monte Carlo and binomial tree techniques to 

value the call options, and they found similar results from both techniques as long as the number of nodes and 

iterations are sufficiently high. They compared RE investment frameworks in Finland, Denmark, and Portugal, 

and found that Finland had the strongest economic support for wind energy. Their primary sources of 

uncertainty were construction costs and electricity prices.Thomas and Chrysanthou (2011) apply Black-Scholes 

real options analysis to find the optimal time for investment in nuclear power, offshore wind, and onshore wind, 

and found that nuclear power is most economically viable under contemporary market and policy conditions. 

The main source of uncertainty was electricity prices,although the effect of renewable obligation credits was 

also explored. 

Two papers consider the use of real options analysis using binomial pricing techniques as applied to 

renewable energy policy in Taiwan (Cheng et al. 2011; Lee and Shih 2010). Cheng et al. (2011) applies a 

modified binomial model based on sequential compound options to explore theeffects of uncertain future 

electricity demand on lead time for implementing a clean energy policy. Their main forms of uncertainty were 

energy demand, for which GDP forecasting was used as a proxy. They use a multistage binomial tree to value 

the real options and therefore attempt to optimise policy strategy in Taiwan.Lee & Shih (2010) also use 

binomial options pricing to explore the interactions of RE policies and the uptake of wind energy generation.  

They found that feed-in-tariffs for wind energy in the context of Taiwan negatively impacted policy return on 

investment, and their models used the cost of non-renewable energy, the cost of renewable energy, and levels of 

policy support as their inputs. 

As can be seen, all of these papers use various real options pricing approaches for the valuation of 

investment in renewable energy,however none of them use fuzzy real options analysis, which is considered in 

the works below. 

The application of fuzzy numbers to finance started with Buckley’s paper (1987) on fuzzy set theory as 

applied to cashflow analysis and the ranking of fuzzy investment alternatives. Fuzzy numbers have since been 

used in real option valuation, as presented in several papers. In particular,Carlsson & Fullér (2003)and  Collan et 

al. (2003)  both describe a model of pricing real options using a Fuzzy Black-Scholes (FBS) model based on 

fuzzy trapezoidal numbers. In these papers, they apply the FBS pricing approach to real options present in giga-

investments with lifetimes of 15-25 years.Carlsson & Fullér (2003)concluded that a fuzzy real options model 

―that incorporates subjective judgments and statistical uncertainties may give investors a better understanding of 

the problem when making investment decisions.‖Following on from this work, the fuzzy payoff method, which 

is based on the Datar-Mathews payoff method, is explored in Collan et al. (2009) and Collan et al. (2012). The 

latter work incorporates the use of a credibility factor to weight the fuzzy inputs according to confidence.  

There have been several works that also look at fuzzy implementations of CRR binomial tree options 

pricing. Ho and Liao (2010; 2011) present a fuzzy Cox-Ross-Rubinstein (FCRR) binomial tree model based on 

fuzzy triangle numbers in their papers and propose a method for computing the mean value of a fuzzy number 

so that it can be compared with a crisp number. Similar implementations of fuzzy binomial tree models are also 

discussed by Muzzioli & Torricelli (2004) and Yu et al. (2011).Muzzioli & Torricelli (2004) describe a FCRR 

approach to financial options pricing using a triangle fuzzy volatility input. This paper shows some comparisons 

of FCRR options prices compared with standard CRR. Yu et al. (2011) also describes a FCRR model using a 

fuzzy triangular volatility parameter, however they do not perform a numerical implementation or compare the 

results of their FCRR implementation with the standard CRR.None of these papers uses a certainty parameter. 

None of these works are specific to the use of fuzzy real options analysis in deployment of smart energy 

infrastructure, nor do they discuss application to specific case studies, which this paper will address. 

Our work differs from these previous papers in several ways. The first set of these papers focuses on 

real options as applied to renewable energy projects, however they do not explore the residual value of solar 

assets, which is a key point of managerial flexibility with response to policy change risks. Additionally, these 

papers use traditional real options valuation rather than fuzzy real options valuationand most of them pertain to 

optimal investment time rather than overall project valuations.  The second set of papers focuses on various 

fuzzy real options valuation models, however they do not apply these techniques to the valuation of renewable 

energy projects.  Furthermore, very few of these papers provide a direct comparison of fuzzy real options 

valuation compared to classical real options valuation, especially with respect to increasing fuzziness.  This 
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paper distinguishes itself from the previous literature in that it applies multiple fuzzy and classical real options 

valuation techniques to solar powered renewable energy projects to check their consistency of performance and 

ease of implementation, and furthermore performs a sensitivity analysis to investigate the behaviour of fuzzy 

real options valuation techniques under the influence ofan increasing uncertainty (fuzziness)parameter and 

proposes an altered FCRR model that provides more stable fuzzy options valuation. 

 

4. Case Studies 
Three projects(Brixton Energy 2012a; Brixton Energy 2012b; Brixton Energy 2013) had their proposed 

initial investments and potential cashflowsanalysed using Discounted Cash Flow(DCF) in order to establish 

their nominal NPV. This was done in order to establish a baseline project valuation before the application of real 

options analysis, and to determine the underlying value of the asset along with the volatilities of the cashflows, 

which are inputs required by options pricing models. The inputs for each business model were pulled from the 

three share offering documents (Brixton Energy 2012a; Brixton Energy 2012b; Brixton Energy 2013), which 

describe three rooftop solar projects in London, along with their cashflows. According to these share offering 

documents,the revenues for these projects were Feed-in-Tariff (FIT) contracts with lengths of 20 years (or 25 

years in the case of Brixton 1) were agreed, whereby each project would receive a fixed payment for each 

kilowatt of electricity generated.  The outgoings included maintenance and insurance costs. The Feed-in-Tariffs 

would provide the revenues that would nominally pay back the initial investment costs, service the annual 

running costs, and give a return on investment to the shareholders.  Because the FIT agreements are fixed, the 

main uncertainties in the business cases were the estimates for the running costs. 

 

Table 1: Three solar projects are shown, financed two different ways, where ―Capex‖ indicates an initial upfront 

investment, and ―Loan‖ indicates loan financing. The expected net cashflow is shown for the first year of the 

project, along with the projected salvage value of the solar arrays at year 20. 

 

The business cases also described an intended repayment scheme for local shareholders and charities, 

but in order to simplify our models, we have performed two types of discounted cashflow analysis (DCF) for 

each project: one as if all of the initial investment capitalhas been funded from internal budgets; and the other on 

the basis that the investment capital comes from a ten year business loan. We therefore model the cashflows for 

the three projects were modelled, first, as if they are outright capital expenditure (capex) investments, and 

second, as if a loan of 10% interest on a down payment of £10,000 is used to finance the projects. Both cash 

flow analyses are conducted under the assumption that there are no shareholders or dividends to pay.  Our result 

is six DCF analyses, yielding six Net Present Value (NPV) project valuations, two for each project, respective to 

the means of financing, as shown in  

 

PROJECT 

 

Size Investment 

 

IRR NPV 

NPV w/ 

Extension Salvage 

Brixton 1: Capex  37 kW £75,000 6% £5,696 £10,046 £13,263.98 

Brixton 2: Capex 45 kW £61,500 10% 26,497 35,826 16,131.87 

Brixton 3: Capex 52.5 kW £67,000 8% 17,668 23,192 18,820.51 

Brixton 1: Loan 37 kW £10,000+Loan 4% -4,595 -245 13,263.98 

Brixton 2: Loan 45 kW £10,000+Loan 11% 18,309 2,307 16,131.87 

Brixton 3: Loan 52.5 kW £10,000+Loan 5% -2,511 3,013 18,820.51 

PROJECT 
 

Size Investment 

 

IRR NPV 

NPV w/ 

Extension Salvage 

Brixton 1: Capex  37 kW £75,000 6% £5,696 £10,046 £13,263.98 

Brixton 2: Capex 45 kW £61,500 10% 26,497 35,826 16,131.87 

Brixton 3: Capex 52.5 kW £67,000 8% 17,668 23,192 18,820.51 

Brixton 1: Loan 37 kW £10,000+Loan 4% -4,595 -245 13,263.98 

Brixton 2: Loan 45 kW £10,000+Loan 11% 18,309 2,307 16,131.87 

Brixton 3: Loan 52.5 kW £10,000+Loan 5% -2,511 3,013 18,820.51 
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Table 1.  These initial valuations serve as the original figures against which our ROV enhanced 

valuations will be compared. 

For real option analysis to be relevant and effective, the project must have some element of managerial 

flexibility(Trigeorgis 1996; Dixit & Pindyck 1994; Amram & Kulatilaka 2000).  The public share offering 

documents(Brixton Energy 2012a; Brixton Energy 2012b; Brixton Energy 2013)gave no speculation as to what 

would happen to the projects after the expiration of the FIT contracts, despite the fact that the lifetime of 

photovoltaic (PV) cells could be up to 20 years longer than the duration of those contracts(Jordan & Kurtz 2013). 

However, due to policy and market uncertainty, there are several scenarios that would prevent the continuing 

operation of the solar installations: the rooftop lease might not be renewed, or the purchase price for the 

electricity may be too low to generate sufficient revenue. If the projects need to be discontinued after the FIT 

expires, the PV arrays could be sold for salvage since they would still have operational lifetime remaining.  Here 

lies the source of the optionality present in this project: the managers will be able to execute some oversight in 

reaction to the prevailing conditions and new information, through which they can attempt maximise future 

revenues. 

The ability to sell the array for salvage can be modelled as an abandonment option because it would be 

exiting the market and shutting down the project. Since it occurs after a fixed term, this scenario can be priced 

as if it were a European put option since that is the method for pricing options to sell an asset to the market at a 

fixed time(Brealey & Myers 2010). In short, the salvage options give valuations for the opportunity – but not the 

obligation – to sell the photovoltaic arrays for salvage at the end of the FIT contracts.  For this reason we 

include the value of these salvage options in our analysis of the project valuations. 

In order to perform a real options analysis on these three projects, a number of values are needed for 

each project, namely: initial investment, NPV, discount rate, revenues, outgoing expenses, variation in 

cashflows (volatility), and salvage value for each array.  The initial investments and NPVs are obtained as 

described above.  The discount rate was established to be 5% since the cashflows are fixed in advance and 

therefore fairly low risk.  

The revenues for each project are basedon the amount of electricity projected to be generated each year, 

with a FIT payment per kWh produced.  Solar PV cells do degrade in efficiency over time, and the public share 

offering documents have factored in a decrease in productivity of 1% per year, although this is higher than 

observed degradation in modern solar cells (Jordan & Kurtz 2013).  However, the FIT agreement is fixed to 

inflation, so payments will also be adjusted according to RPI every year.  Inflation in RPI is generally upwards, 

and to produce a forecast of inflation rates, a Monte Carlo analysis was performed on inflation data from 1986 

to the present, which gave a projected rate of inflation of 3% in 20 years.  The payments for generation were 

adjusted upwards annually according to this level of inflation, as were the variable outgoing maintenance and 

running costs.  Because of the fixed nature of the FIT contracts, the volatility of energy prices does not affect the 

project revenues directly.  The underlying assets for these analyses are the present value of the total cash flows 

for each of the solar projects and the intrinsic value of the photovoltaic arrays. 

The salvage value for each array iscalculated by assuming that it would be possible to receive 50 pence 

per kilowatt of generating PV, and then discounting that total value back to the present value.  This was done 

according to information given by McCabe (2010), which stated that $1 per kilowatt is not uncommon.  The 

same paper states that banks often calculate salvage value for PV arrays by estimating them at 15-25% of the 

initial investment.  However, as can be seen by comparing the project costs of Brixton 1 (£75,000 for 37kW) 

with the later project Brixton 3 (£67,000 for 52.5kw), PV and installation costs have dropped dramatically in the 

past few years, so it is more consistent to fix the salvage price to generating capacity of the arrays rather than to 

initial investment amounts. 

The future expected cashflows are calculated using the following assumptions.  The first assumption is 

that even if the FIT can be renewed in the future, it will be at a lower rate on the basis of recent policy changes 

with respect to FIT tariffs from the UK Department of Energy & Climate Change (2015). According to the 

current policy changes, agreed FIT payments for solar schemes are 4.59 pence per kWh as of January 2016.  It is 

very difficult to predict energy tariffs 20 years in the future, whether subsidised or not, but for the purposes of 

our calculations, we have assumed a FIT rate of 4 pence per kWh and 1 pence per kWh for export for any 

renewed FIT contract beyond year 20.  We have also assumed two outcomes for the purposes of calculating 

future expected cashflows: 1) a 50% chance of renewing a contract with the updated FIT terms, or 2) a 50% 

chance of failing to secure a new FIT contract or rooftop lease. We also assume that the fixed annual costs 

remain constant over the lifetime of the project.  

With these parameters in place, we then calculated the expected average cashflows for each project 

from the years beyond the standard FIT contract, as follows.  We summed the present value of the cashflows 

from year 20 (or 25 for Brixton 1) to year 40.  We averaged this sum with zero to reflect the 50% chance of 

receiving no revenues over those years. The standard deviation was also calculated, and these were used to 
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calculate the variance in the projects’ returns at the time of the expiry of the option (either year 20 or 25).  The 

coefficient of variation (CV) was then calculated as the standard deviation divided by the average expected 

cashflows.  This way, the variance, σ
2
, of the projects’ returns was calculated using 

 

𝜎2 =  
ln(CV

2 + 1)

𝑡
 

( 1 ) 

 

where CV is the coefficient of variation, and t is the time until the option expires (20 or 25 years, 

respectively). The square root of the variance is the volatility, σ, and according to this analysis, the volatilities of 

all three of the projects were consistently 21%.  It is also notable that the expected cashflows (asset value) for 

each project were the same regardless of financing due to the fact that a ten-year loan would be paid off before 

the timeframe being considered, rendering the cashflows from year 20 (or 25) onward equivalent.  This meant 

that only one option price per project needed to be calculated, irrespective of whether it was cash or loan 

financed.  If the loan repayment had stretched into the option time horizon being considered, this would not 

have been the case. 

Now that the inputs necessary to price an option (asset price, strike price, lifetime, and volatility) are 

established, the salvage option price is calculated using the four option valuation techniques as described below. 

 

5. Methodology 
In order to determine whether fuzzy real options can be used to improve smart energy investment 

valuation, and to evaluate their consistency and ease of use, the traditional real options valuations techniques 

(Trigeorgis 1996; Amram & Kulatilaka 2000; Copeland & Antikarov 2003) must be compared with their 

respective Fuzzy Black-Scholes and Fuzzy CRR Binomial Tree methods. To this end, the Black-Scholes and 

CRR binomial tree models are utilised because they are the standard ROV models for use in continuous-time 

(analytic) and discrete-time scenarios, respectively (Martínez Ceseña et al. 2013). Because our business cases 

and their resulting cashflows consist of one option scenario that is fixed in time, both the Black-Scholes and the 

CRR binomial tree approaches are applicable. The two results from the two FROV models are compared with 

the results from the ROV modelsto explore whether additional ―fuzziness‖ or uncertainty in the inputs yields 

options values that are consistent with the ROV models, and to determine if the ability to take fuzzy inputs 

makes the FROV models easier to use than the traditional ROV models. 

The options prices for three rooftop solar projects were calculated using four valuation techniques: 

classical Black-Scholes(BS) (Black & Scholes 1973; Merton 1973); Fuzzy Black-Scholes (FBS) (Carlsson & 

Fullér 2003; Collan et al. 2003); traditional Cox, Ross, and Rubinstein (CRR) binomial tree(Cox et al. 1979); 

and Fuzzy CRR Binomial Tree(FCRR)(Liao & Ho 2010; Ho & Liao 2011; Yu et al. 2011; Muzzioli & Torricelli 

2004).The Black-Scholes and CRR binomial tree techniques were used because these are the most common 

techniques used in existing real options calculators.In the case of the Black-Scholes, Fuzzy Black-Scholes (FBS), 

and CRR binomial tree analyses, we implement the models exactly as described in the previous literature so that 

our findings can be directly comparable to those found in the previous literature.  In the case of the Fuzzy CRR 

(FCRR) model, we have implemented our model differently to the previous literature for two reasons:  firstly, in 

order to draw comparison between the different models, we needed to ensure that they all took similar inputs, 

and secondly, we altered the FCRR pricing method in order to avoid a distortion in the option prices, which is 

explained in detail below.  The options were modelled as European puts with a fixed lifetime of 20 years (or 25 

for Brixton 1), which corresponds to the expiry of the Feed-in-Tariff (FIT) contract for each of these projects. 
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Figure 1: Fuzzy Trapezoidal Number (Collan et al. 2003) 

 

 

 
Figure 2: A Fuzzy Triangle Number (Ho & Liao 2011) 

 

In order to compare the fuzzy options prices calculated from the FBS and FCRR techniques, the fuzzy 

outputs must be converted to a crisp number. As shown by Carlsson & Fullér (2003b), the possibilistic mean 

value of a fuzzy trapezoidal number A’ can be calculated as 

 

𝐸 𝐴′ =  
𝑎 + 𝑏

2
+  

𝛽 − 𝛼

6
  , 

( 2 ) 

 

where a, b, α,and β are as depicted in Figure 1 above, and a and b correspond to the lower and upper 

bound of the fuzzy trapezoidal number, andαand βcorrespond to the ―fuzzy‖ parameter, or an additional range of 

possibility above or below the core [a,b] range. This technique for finding the fuzzy mean value essentially 

operates as a weighted average. Therefore if the trapezoidal fuzzy number is symmetric such that αandβare 

equal, then the second term in E(A’) drops out and ( 2becomes a straightforward arithmetic average for a 

number A’=[a,b].   

 

A similar technique is used for the triangular fuzzy numbers resulting from the FCRR model, in 

accordance with the approach described by Ho & Liao (2010; 2011). In order to derive the crisp option value 

from the fuzzy, a weighted arithmetic mean of a fuzzy number Vn’ is used as follows: 

 

𝐸 𝑉𝑛
′ =

 1 − 𝜆 𝑐1 + 𝑐2 + 𝜆𝑐3

2
 

( 3 ) 
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where c1, c2, and c3 are the range values of the fuzzy triangle number Vn’ = [c1, c2, c3] (as shown in 

Figure 2), and 𝜆 =
𝐴𝑅

𝐴𝐿+𝐴𝑅
. Because AL and AR are the areas of the triangles as defined by the values c1, c2, and c3, 

𝜆 can be expressed as 

 

𝜆 =  
𝑐3 −  𝑐2

𝑐3 −  𝑐1
. 

 

Similar to the FBS model, if the triangle fuzzy number is symmetric such that c3 – c2 = c2 – c1, then the 

resulting crisp option price is equivalent to pricing a CRR option using c2, the middle value. 

 

We performed a sensitivity analysis to confirm that changes in the overall fuzziness of the inputs did 

not introduce a skew in the resulting fuzzy options pricing. To investigate the robustness of the fuzzy options 

methods with respect to increasing fuzziness, a series of call option prices were generated using the FCRR 

model (based on (Ho & Liao 2011; Yu et al. 2011; Muzzioli & Torricelli 2004; Liao & Ho 2010))where all of 

the inputs are kept static except the fuzziness parameter, which was increased in increments of 5%.  The results 

of this procedure are displayed in Figure 3, which shows that the mean values of the fuzzy options prices that 

are produced increase exponentially with respect to the fuzzy parameter. This increase in mean option value 

comes from the positive skew in interim option values at each node in the CRR options lattice, and is due to fact 

that an increasingly fuzzy volatility leads to larger spreads in the ―jump‖ factors that are used to construct the 

payoff lattice. In the CRR model, negative payoffs are discarded at each step in favour of zero, in accordance 

with the standard implementation of the payoff equations, which leads to an increase in option value 

proportional to the fuzziness. As stated by Liao & Ho (2010), ―the characteristic of right-skewed distribution 

also appears in the FENPV of an investment project when the parameters (such as cash flows) are characterized 

with fuzzy numbers,‖ so this appears to be an implementation decision, however as shown in Figure 3, this 

approach has the effect of overinflating option values when uncertainties increase.  Given that FCRR options 

prices should remain stable and consistent with prices generated by other methods like FBS, our FCRR 

valuation method is implemented slightly differently. 

 

 
Figure 3: Call prices resulting from the Ho & Liao fuzzy volatility-based implementation of CRR compared 

with a fuzzy asset and strike price based implementation of CRR. 

 

In order to decouple the skew in FCRR option values from the increase in fuzziness, we implemented 

the FCRR in a modified manner.  In our FCRR model, instead of using the fuzzy parameter to generate a fuzzy 

volatility input, σ′, we instead kept the volatility constant while using the fuzzy parameter to generate a fuzzy 

triangle asset price S0’ and a fuzzy triangle strike price X’.  This means that the lattice jump factors are 

dependent on a crisp volatility value alone, preventing the introduction of an exponential rise in asset and option 
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values in the lattices, which in turn prevents the increase in mean option price.  In this method, the up and down 

jump factors and their corresponding probability is calculated according to the traditional CRR method. The 

fuzzy asset and strike prices, S0’ and X’, are used to create a fuzzy version of the payoffs for the option pricing 

lattice subject to the condition max 𝑋′ − 𝑆′𝑖𝑢′
𝑖𝑑′

𝑛−𝑖 , 0 .  By using this method of using fuzzy asset and strike 

price inputs, a fuzzy triangle European put option value is calculated, but without the skew introduced by using 

a fuzzy volatility input. 

As compared with the Ho & Liao (2010; 2011) options prices shown in Figure 3, the mean call option 

prices that result from our model are stable with respect to fuzziness.  As shown in Figure 4, the range of fuzzy 

call values increases as fuzziness increases, but the mean remains stable, as expected.  This, in turn, yields 

option prices that are consistent with other pricing methodologies, rather than inflating the options valuation. 

 

 
Figure 4: The spread of fuzzy option values increases with respect to increasing fuzziness, however the mean 

remains stable. 

 

6. Results and discussion of the analysis 
As discussed above, inputs that are symmetric around a crisp asset and/or strike value will yield mean 

option prices equal to their crisp counterparts (see Equations ( 2 and ( 3).  However, as the symmetric case is 

also the most trivial case, it does not offer any insights into the sensitivity of the fuzzy options models when 

they are responding to human inputs that are less likely to be symmetric and more likely to incorporate a greater 

variance in estimates for the asset and strike inputs.Therefore a random element of fuzziness introduced into the 

strike and asset price inputs for the fuzzy models in order to replicate the vagaries of human uncertainty. In this 

way, we are able to explore whether these fuzzy real options models return values that were robust under 

slightly varying levels of fuzziness. 

Using the inputs from the rooftop solar projects, the four options valuation models, both traditional and 

fuzzy, were checked for consistency.  In order to do this, the put option valuation was calculated for the salvage 

option present after year 20 (25 in the case of Brixton 1) when the Feed-in-Tariff (FIT) contract expires, and yet 

the PV installations should still be generating useable electricity.  In order to calculate the value of the salvage 

options, the average of the future expected cashflows was used as the underlying asset, and the salvage value of 

the PV arrays was used as the strike price. The technique that was used for calculating the salvage option is 

analogous to the approach of valuing an abandonment option (Brealey et al. 2011) due to the fact than an asset 

would be sold on after project abandonment. In this method, the contracted FIT cashflows for the first 20 (or 25) 

years are used to calculate the standard NPV, and then the uncertain cashflows for the years beyond to year 40 

are used to calculate the expected cashflows.   

We found that the existing fuzzy volatility-based FCRR models skewed the resulting option prices as 

the fuzziness parameter was increased (as shown in Figure 3). Thereafter, the model was modified such that the 

new fuzzy asset/strike-based FCRR model became stable with respect to fuzziness, or in other words, the mean 

option price neither increases nor decreases as the degree of fuzziness is changed.  Instead, as expected, the 

spread of the resulting fuzzy option prices does increase, but so as along as this spread is symmetric, it should 
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have no effect on skewing the mean option price.  We have therefore used this modified FCRR model in our real 

options analysis in order to yield stable results. 

After the input parameters were established from the cash flow analysis of the three rooftop solar 

projects in Brixton, the data from each project was fed into the four options valuation models described 

previously: traditional Black-Scholes(BS); Fuzzy Black-Scholes (FBS); traditional Cox, Ross, and Rubinstein 

(CRR) binomial tree; and Fuzzy CRR Binomial Tree(FCRR).  The NPVs and salvage values are shown for the 

projects in  

 

Table 1. In this analysis, the fuzziness parameter was set to 5% in order to represent a reasonable level 

of uncertainty in the cash flows. All four options pricing models were implemented so that the resulting option 

prices could be compared for consistency, and in order to investigate whether adding additional flexibility to the 

inputs in the form of ―fuzziness‖ returned results consistent with non-fuzzy options valuation models.  

 

Because the fuzzy option value in the FBS model shiftsaccording to the changes in α and β, we used a 

Monte Carlo technique in order to get a truly average FBS option value to compare with the traditional Black-

Scholes. The FBS model was run 100 times for each set of input parameters, with a small element of 

randomness introduced each time. The meanwas taken of the resulting option prices, which was then be 

compared with the traditional Black-Scholes price to see if the values were consistent and whether the FBS 

model was robust under the introduction of random variations in inputs. 

A similar technique was applied to the triangle fuzzy asset and strike price inputs for the FCRR model.  

The fuzzy parameter was used to set the triangle points,c1 and c3, equidistant about the midpoint, c2, and then 

multiplied them by a random number between 0 and 1 to deform the triangle distribution randomly around c2. 

As in the FBS case, this has the effect of also skewing the mean option price, so in order to get a true average 

FCRR option value to compare against the traditional CRR case, the model was also run for 100 times for each 

set of inputs.  Thecrisp average of these resulting options prices was then compared against the traditional CRR 

results. 

The mean European put prices resulting from the four options pricing techniques were found to be 

consistent (see  

Table 2).Despite using fundamentally different techniques for calculating the put option prices, the 

resulting values were consistent with each other across each project within 2%. The consistency of the resulting 

option prices, regardless of the pricing method used, demonstrates that even when allowing for some fuzziness 

in the inputs, consistent option prices are obtainable.  

 

PROJECT 
 

Size Investment 

 

IRR NPV 

NPV w/ 

Extension Salvage 

Brixton 1: Capex  37 kW £75,000 6% £5,696 £10,046 £13,263.98 

Brixton 2: Capex 45 kW £61,500 10% 26,497 35,826 16,131.87 

Brixton 3: Capex 52.5 kW £67,000 8% 17,668 23,192 18,820.51 

Brixton 1: Loan 37 kW £10,000+Loan 4% -4,595 -245 13,263.98 

Brixton 2: Loan 45 kW £10,000+Loan 11% 18,309 2,307 16,131.87 

Brixton 3: Loan 52.5 kW £10,000+Loan 5% -2,511 3,013 18,820.51 

PROJECT BS Put FBSput ECRRput EFCRRput Avg StdDev Error 

Brixton 1 £2,046.70 £2,045.45 £2,019.11 £2,020.83 £2,033.02 £15.10 0.74% 

Brixton 2 2,439.64 2,442.19 2,393.75 2,394.53 2,417.53 27.03 1.12% 

Brixton 3 4,327.33 4,329.62 4,284.98 4,290.35 4,308.07 23.68 0.55% 

PROJECT BS Put FBSput ECRRput EFCRRput Avg StdDev Error 

Brixton 1 £2,046.70 £2,045.45 £2,019.11 £2,020.83 £2,033.02 £15.10 0.74% 

Brixton 2 2,439.64 2,442.19 2,393.75 2,394.53 2,417.53 27.03 1.12% 

Brixton 3 4,327.33 4,329.62 4,284.98 4,290.35 4,308.07 23.68 0.55% 
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Table 2: The outputs of the European Put options pricing models for each project according to the following 

methods: Black Scholes (BS), Fuzzy Black Scholes (FBS), CRR binomial tree, and fuzzy CRR binomial tree 

(FCRR). 

 

One of the main objectives of this work has been to verify the hypothesis of whether real options 

analysis increases the valuation of these smart energy projects in order to improve their investment potential. 

Since the put option prices generated were consistent across the four valuation techniques, the average put 

option price for each project was used to adjust the original net present value (NPV) of each project to produce 

an Enhanced NPV (ENPV). This was achieved by adding the value of the salvage options to the original NPV 

(Trigeorgis 1996; Amram & Kulatilaka 2000). By so doing, the ENPV will then take into account the salvage 

value and expected future cashflows beyond FIT expiry, which are the main inputs into the put option 

calculation, where the salvage value is the strike price, and the cashflows are the asset price. 

 

Table 3: The Enhanced Net Present Values (ENPV) resulting from combining the salvage option with the FIT 

NPV.  As can be seen, the ENPV values lie between the FIT NPV and 40-Year NPV values, which is consistent 

with the fact that these options factor in a level of uncertainty in the expected cashflows. 

 

The project valuations increased when real options analysis was used. Some of the original project 

NPVs were negative, indicating that their potential for success was low (Brixton 1: Loan and Brixton 3: Loan).  

The ROV-adjusted NPVs are all positive, showing that allowing for the optionality of selling the photovoltaic 

arrays for salvage does improve the investment potential for these solar projects.  A summary of these results is 

given in Figure 5. These results are consistent with the behaviour of options prices themselves.  The put prices 

can be interpreted as a forecast of project viability in that a higher put price indicates a higher likelihood of 

exercising that option.  

 

PROJECT Investment FIT NPV 40 Year NPV ENPV 

Brixton 1: Capex £75,000 £5,695.67 £10,045.95 £7,728.69 

Brixton 2: Capex £51,500 26,497.22 £35,824.56 £28,914.75 

Brixton 3: Capex £67,000 17,668.42 £23,192.40 £21,976.49 

Brixton 1: Loan £10,000 + Loan -4,595.17 -£245.00 -£2,562.14 

Brixton 2: Loan £10,000 + Loan 18,309.45 £27,637.00 £20,726.98 

Brixton 3: Loan £10,000 + Loan -2,510.71 £3,013.00 £1,797.37 
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Figure 5:The original NPV of the three projects (with both up-front capital and loan financing cases shown) as 

compared with the adjusted NPV after the value of the abandonment option is added, along with the NPV of 

running the project with an extension to 40 years after FIT expiry. 

 

To further investigate the use of option prices as an indicator of project viability, we calculated the 

internal rates of return for each of the six projects using their forecasted cashflows, and plotted these values 

against their respective ENPVs.  Since IRR is related to NPV, and both are used as benchmarks of returns on 

investment, we would expect a linear relationship. The resulting graph (Figure 6) shows this linear relationship 

between the IRRs and ENPVs, with an R
2
 value of 84%, albeit with a small sample size. 

 

 
Figure 6:  The internal rates of return (IRR) for each project plotted against their respective Enhanced NPVs.  

The resulting relationship is linear, with an R
2
 value of 84%. 

 

To summarise our findings, we first found that the fuzzy real options models returned values that are 

consistent with the traditional real options models, and that the results are robust under changing levels of 

fuzziness. For every project, the project valuations were increased when real options analysis was applied. 

Originally, some of the project NPVs were all negative, demonstrating pessimistic prospects for payback, 
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however the valuations according to the real options models were all positive except one (which still improved), 

indicating that investment prospects are improved when the values of flexibility and managerial oversight are 

included.  

One rationale given for the use of FROV is that these models are easier to use than the traditional and 

well-established models in circumstances where the cash flows or strike prices are uncertain. In such cases, the 

process of carrying out a business case and balance sheet analysis in order to determine the cash flow and 

salvage value inputs for the fuzzy ROV models would yield a range of values from pessimistic to optimistic.  

These values would then be arranged into a triangular or trapezoidal fuzzy number and input into the relevant 

FROV model. 

However, we argue that it is no more of an onerous process to merely run the traditional options 

valuation models at least twice, once for each set of pessimistic or optimistic values, in order to generate a 

plausible range of options prices. Furthermore, since there are many options calculators in the business world 

that have already implemented the traditional versions of Black-Scholes and CRR binomial trees, this would 

mean that practitioners could take advantage of pre-existing tools rather than having to seek out or create 

specialised options pricing implementations. 

For example, when we examine the case of Brixton 3, where the value of the cashflow S0 was £3,045, 

and the salvage value X was £18,820, triangle and trapezoidal fuzzy numbers can be created to estimate the 

pessimistic and optimistic ranges for these values as follows: 

 

𝑆0𝑡𝑟𝑖
′ =  2890, 3045, 3198 ;   𝑋𝑡𝑟𝑖

′ =  15000, 18820, 18920  

𝑆0𝑡𝑟𝑎𝑝
′ =  2969, 3121, 80, 250 ;     𝑋𝑡𝑟𝑎𝑝

′ = [18350, 19221, 510, 1220]  

 

These fuzzy numbers were created based upon the actual cashflows, but the ranges were chosen to 

reflect both a reasonable level of uncertainty and/or volatility; the ranges were also selected to be deliberately 

non-symmetric so that the classical crisp option value would not be trivially reproduced. 

 

The fuzzy trapezoidal numbers were input into the fuzzy Black-Scholes model, and the fuzzy triangle 

numbers were input into the fuzzy CRR model.  The European put option price according to the fuzzy Black-

Scholes model was found to be 

𝑉𝐹𝐵𝑆
′ = [4147, 4337, 117, 240], and the put option price according to the fuzzy CRR model was found to be 

𝑉𝐹𝐶𝑅𝑅
′ = [4186, 4214, 4209]. For comparison, the crisp Black-Scholes value was VBS = 4262, and the crisp CRR 

put value was VCRR = 4197. 

 

The fuzzy put values yield an option range of about 4030 to 4577. By comparison, the traditional crisp 

Black-Scholes model was then used for the following two pairs of inputs: S01 = 3121, X1 = 18350; and S02 = 

2969, X2 = 19221.  These values represent the optimistic cashflow values paired with the pessimistic salvage 

values, and vice versa, to obtain the indicative option price spread.  The Black-Scholes put values resulting from 

these two sets of values are V1 = 4045 and V2 = 4441, with an average put value of 4243, which is within 2% of 

VBS and VCRR given above. This demonstrates that rather than having to deal with the complexity of 

implementing a new fuzzy ROV model, comparable values can be obtained through the use of traditional real 

options valuation by using the same pessimistic and optimistic values for cashflow and salvage. 

 

6. Conclusions 
The main objective of the analysis here has been to explore whether fuzzy real options could improve 

the investment prospects ofrenewable energy and energy efficiency projects. Four real options analysis methods 

were used to value the salvage option present in three urban rooftop solar projects. Two of these methods, Fuzzy 

Black-Scholes and Fuzzy Binomial, used fuzzy numbers for analysis.  These techniques take fuzzy cash flows 

and salvages as inputs, and output the options prices as fuzzy numbers.  The values produced from the fuzzy 

options modelswere found to be consistent with the outputs from the traditional options models. This 

consistency in values demonstrates that, despite allowing for uncertainties in the inputs, reliable outputs can be 

attained from both of these fuzzy option valuation methods.  Furthermore, the use of real options valuation to 

adjust project NPVs retains a linear relationship with IRR, confirming that both can be useful as project viability 

indicators. 

For the projects analysed in our case study, their financial valuations were indeed improved by real 

options analysis, and fuzzy real options models gave robust and consistent results. Ideally, the flexibility 

inherent within fuzzy real options valuation would help with incorporating the policy and cashflow uncertainties 

that are common to many renewable energy projects, however we found that similar results could be found from 
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traditional ROV with less effort.Therefore, in relation to the effective applicability for practitioners of the FROV 

models, we conclude that they require some work in implementation, since standard options calculators cannot 

be used. Similar results (i.e., a set of option values) can be found by merely running the traditional ROV models 

over a range of crisp inputs. The resulting range of crisp ROV option values is very close to those returned by 

the FROV models, which brings into question the usefulness of FROV techniques, particularly in the scope of 

renewable energy investment. 
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